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ABSTRACT. The ‘frequentist’ approach to statistics, currently dominating statistical practice in
astrophysics, is compared to the historically older Bayesian approach, which is now growing in pop-
ularity in other scientific disciplines, and which provides unique, optimal solutions to well-posed
problems. The two approaches address the same questions with very different calculations, but in
simple cases often give the same final results, confusing the issue of whether one is superior to the
other. Here frequentist and Bayesian methods are applied to problems where such a mathematical
coincidence does not occur, allowing assessment of their relative merits based on their performance,
rather than on philosophical argument. Emphasis is placed on a key distinction between the two
approaches: Bayesian methods, based on comparisons among alternative hypotheses using the sin-
gle observed data set, consider averages over hypotheses; frequentist methods, in contrast, average
over hypothetical alternative data samples, and consider hypothesis averaging to be irrelevant.
Simple problems are presented that magnify the consequences of this distinction to where common
sense can confidently judge between the methods. These demonstrate the irrelevance of sample
averaging, and the necessity of hypothesis averaging, revealing frequentist methods to be funda-
mentally flawed. To illustrate how Bayesian and frequentist methods differ in more complicated,
astrophysically relevant problems, Bayesian methods for problems using the Poisson distribution
are described, including the analysis of ‘on/off’ measurements of a weak source in a strong back-
ground, and the analysis of time series resulting from recording event arrival times. Weaknesses
of the presently used frequentist methods for these problems are straightforwardly overcome using
Bayesian methods. Additional existing applications of Bayesian inference to astrophysical problems
are noted.
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1. INTRODUCTION

Physics has an enormous aesthetic appeal. A great part of this appeal is the unity that
physics brings to the wild variety of nature. Nowhere is this unity more apparent than in
astrophysics, where physical laws are applied with astonishing success to situations that
could hardly be more different than those of the earthbound laboratories in which they
were first deduced and studied.

But astrophysics is an observational, not an experimental science. The phenomena
under study are nearly always inaccessible to direct manipulation, and must be observed
from great distances, and often indirectly. As a consequence, the scientific inferences of
astrophysicists are fraught with uncertainty.

To realize the scientific potential of astrophysics thus demands an understanding, not
only of the necessary physics, but also of the principles of inference that dictate how infor-
mation can be optimally extracted from observational data and how theoretical predictions
can be rigorously compared with such data. Indeed, for this very reason astronomers have
made many of the most important early contributions to probability theory and statistics
(Feigelson 1989). But in recent decades, there has been little interaction between astro-
physicists and statisticians, and the majority of modern astrophysicists have little expertise
in the use of sophisticated statistical methods.

In particular, few astrophysicists are aware that there is a controversy in statistics over
the meaning of the most fundamental notion of the theory: probability. The traditional
view, which we will call the frequentist view, identifies probability with the relative frequency
of occurrence of an outcome in an infinite number of ‘identical’ repetitions of an experiment,
or throughout an infinite ensemble. The older, Bayesian view, first clearly enunciated by
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Laplace in his analyses of statistical problems in celestial mechanics, holds that probability
is a measure of plausibility of a proposition, the degree to which it is supported by specified
information. Though the frequentist viewpoint has been the orthodox viewpoint throughout
this century, in recent decades there has been a great revival of interest in the Bayesian
approach to probable inference.

Those physical scientists who are aware of the Bayesian/frequentist controversy almost
universally share the opinion that these approaches are just different ways of interpreting the
same calculations, and dismiss the controversy as being merely ‘philosophical.’ Or, aware
that many Bayesian calculations require prior probabilities, they believe that Bayesian
methods can differ significantly from their frequentist counterparts only when strong prior
information is available. Neither of these beliefs is true.

Astronomers are not alone in having misconceptions about Bayesian inference. Many
practicing statisticians also misunderstand the nature and extent of the distinction between
the Bayesian and frequentist approaches. In particular, Lindley (1990) has noted that many
frequentist statisticians fail to recognize Bayesian inference as ‘a separate paradigm, distinct
from their own, and merely... think of it as another branch of statistics, like linear models.’

On the contrary, Bayesian and frequentist methods are fundamentally and profoundly
different. They address the same problem with different calculations, and can reach sub-
stantially different conclusions even in the absence of strong prior information. By a math-
ematical coincidence, the results of Bayesian and frequentist calculations for some of the
most simple and most common problems are mathematically identical. However, they dif-
fer, not only in their interpretations, but in their derivations, and such an identity will not
hold in general.

The key contrast between Bayesian and frequentist methods is not the use of prior
information, but rather the choice of alternatives that are relevant for inference: Bayesian
inference focuses on alternative hypotheses, frequentist statistics focuses on alternative
data. To asses an hypothesis, H1, Bayesian methods compare the probability of H1 with
the probabilities of other hypotheses; frequentist methods assume H1 is true, and compare
the probability of the observed data, D, with the probabilities of other data sets predicted
by H1.

A simple example will caricature this distinction. Let p(A | B) denote the probability
that some proposition, A, is true, given the truth of proposition B. If, given the truth
of H1, there are two possible data sets with probabilities p(D1 | H1) = 0.001 and p(D2 |
H1) = 0.999, frequentist statistics considers observation of D1 to be evidence against H1

because it is so much less probable than the unobserved datum, D2. Bayesian statistics
insists that this information alone tells us nothing about H1, since observation of D1 is a
possible consequence of the truth of H1. Observation of D1 can only be considered to be
evidence against H1 if there is a plausible alternative hypothesis, H2, for which p(D1 | H2)
is sufficiently greater than 0.001. The priors for the two hypotheses determine precisely
how much greater ‘sufficiently greater’ is. Priors are required to make the comparisons
necessary in Bayesian inference, but they are not its essential distinguishing feature. It is
the nature of the alternatives compared that distinguishes the two approaches.

I argue here that a return to the Bayesian approach promises to greatly improve the
accessibility, precision, and power of statistical inference in astrophysics.

The case for Bayesian inference can be made in two complementary ways, emphasizing
either its conceptual or pragmatic superiority to frequentist statistics. The compelling
conceptual and mathematical foundations of Bayesian inference have been reviewed for
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astrophysicists in Loredo (1990), and are discussed more fully in the references cited there
and in more recent works (Howson and Urbach 1989; Lindley 1990). The present paper
seeks to demonstrate the superiority of Bayesian methods with more pragmatic criteria:
Bayesian methods simply perform better in actual applications.

We will begin with a description of Bayesian and frequentist methods in Section 2
indicating how conceptual differences associated with the definition of probability lead
to fundamental methodological differences in the procedures the two approaches use to
address the same problem. We will emphasize the key contrast between the approaches
just noted: the choice of alternatives relevant for inference. We will note that this contrast
leads the two approaches to consider different kinds of averages in calculations: Bayesian
calculations consider averages over hypotheses; frequentist calculations consider averages
over hypothetical data (Efron 1978).

Sections 3 and 4 then present simple ‘toy’ problems that highlight this contrast and
demonstrate that it has serious practical consequences. Section 3 will present two simple
problems demonstrating that inferences based on the consideration of hypothetical data can
be seriously misleading. The first problem, based on the χ2 goodness-of-fit test, illustrates
how ambiguity in the specification of data that might have been seen but were not can
cause frequentist inferences to depend in a troubling way on phenomena that are irrelevant
to the hypothesis under consideration. The second problem, employing common parameter
estimation methods, demonstrates that the frequentist focus on good long-term behavior
(averaged over many hypothetical data sets) can cause frequentist procedures to behave
very poorly—even nonsensically—in individual cases. Good single-case behavior can be
sacrificed for good long-term behavior.

Section 4 presents a simple problem demonstrating the necessity of explicitly consid-
ering alternative hypotheses in inference. Specifically, we address inference in the presence
of nuisance parameters, the descriptive technical name for parameters that are a neces-
sary element of a model for a phenomenon, but whose values are not of interest to the
investigator. In an influential paper, Lampton, Margon, and Bowyer (1976) describe a
frequentist method for eliminating uninteresting parameters in astrophysical data analysis;
their ‘projected χ2’ procedure has recently been advocated by Press, et al. (1986). But a
simple example reveals this procedure to be seriously flawed, and traces this flaw back to
the inability of frequentist methods to consider averages over alternative hypotheses.

Section 5 presents simple and astrophysically useful applications of Bayesian inference
to problems involving the Poisson distribution that illustrate some of the ideas presented
in Sections 3 and 4. Specifically, we discuss the measurement of a weak counting signal
in the presence of a (possibly strong) background, and the analysis of event arrival times
for periodicity. The results of Bayesian period detection calculations do not depend on the
number of periods searched, eliminating a troubling subjective aspect of frequentist period
detection procedures that has been the cause of much controversy among astronomers.

Section 6 briefly addresses the important problem of assigning direct probabilities for
Bayesian inference, particularly the assignment of prior probabilities. We defer discussion
of priors to this late Section in order to emphasize more fundamental points of contrast
between Bayesian and frequentist methods addressed in earlier Sections.

Concluding remarks, with references for all astrophysical applications of Bayesian
methods I know of, are presented in Section 7.
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2. SUMMARY OF BAYESIAN AND FREQUENTIST APPROACHES:
INFERRING A GAUSSIAN MEAN

Bayesians and frequentists agree on the rules for manipulating probabilities. However, their
disagreement over the meaning of probability leads them to calculate the probabilities of
different things in order to address the same question. Essentially, they disagree on what
the arguments of probability symbols should be.

In this Section, we summarize the differences between the two approaches, illustrating
each approach by applying them to a familiar statistical problem: inferring the mean of a
Gaussian distribution.

2.1 Bayesian Inference

For a Bayesian, the probability p(A | B) is a real-number-valued measure of the degree to
which proposition A is supported by the information specified by proposition B. It is a
numerical description of what B tells us about the truth of A, a measure of the extent to
which B distinguishes between A and the alternatives to A. Any proposition is considered
‘fair game’ as the argument of a probability symbol. Of course, this is not to imply that
the value of p(A | B) is well-defined for every possible A and B. Indeed, one of the
most important areas of research in Bayesian probability theory is the determination of
the kinds of propositions for which there are well-defined probability assignments. As a
bare minimum, B must specify the alternatives to A. After all, the truth of A can be
uncertain only if there are alternatives that may be true in its place. Any assessment of the
plausibility of A will depend on those alternatives and the extent to which any additional
information specified by B distinguishes between them.

All allowed manipulations of Bayesian probabilities can be built from two basic rules.
Writing A for “not A” (a proposition that is true if A is false), and AB for “A and B”,
these rules are the familiar sum rule,

p(A | C) + p(A | C) = 1, (2.1)

and the product rule,

p(AB | C) = p(A | BC) p(B | C)

= p(B | AC) p(A | C). (2.2)

As an abstract but important example of the Bayesian application of the sum and
product rules, consider propositions H1, H2, and so on, asserting the truth of particular
hypotheses, and a proposition D, asserting the observation of particular data relevant to
those hypotheses. These propositions are all legitimate arguments for a probability symbol.
Using equation (2.2), a Bayesian could calculate the probability, p(H1D | I), that hypothesis
1 is true and that the observed data is as specified by D,

p(H1D | I) = p(H1 | DI) p(D | I)

= p(D | H1I) p(H1 | I). (2.3)

Here I is the background information that specifies the problem under discussion; in partic-
ular, it must, at the very least, specify the hypotheses alternative to H1, and some logical
connection between the data and each of the hypotheses. That is, I must specify sufficient
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information to permit unambiguous assignment of the various probabilities needed for a
calculation.

It is a trivial matter to solve equation (2.3) for p(H1 | DI) to obtain Bayes’ Theorem,

p(H1 | DI) = p(H1 | I)
p(D | H1I)

p(D | I)
. (2.4)

Bayes’ theorem, a consequence of the product rule, is the most important calculating tool
in Bayesian probability theory. This is because it describes one of the most important
processes in science: learning about hypotheses from data. In particular, it tells us how to
update the prior probability of an hypothesis, p(H1 | I)—which may summarize information
about H1 as primitive as the mere specification of alternatives or as complicated as the
results of 1000 previous experiments—to its posterior probability, p(H1 | DI), which now
includes the information provided by the data, D. The updating factor is the ratio of two
terms. Only the numerator, p(D | H1I), depends explicitly on H1; it is called the sampling
distribution in its dependence on D, or the likelihood function in its dependence on H1. The
denominator, called the prior predictive probability or the global likelihood, is independent
of H1 and is thus simply a normalization constant. It can be calculated by summing the
product of the prior and the likelihood function over all alternative hypotheses Hi,

p(D | I) =
∑

i

p(Hi | I)p(D | HiI), (2.5)

as shown in Loredo (1990) and references therein.
To illustrate the use of Bayes’ theorem, imagine that we want to determine the distance,

l, to some object from N measurements, mi, contaminated by noise. A possible model for
these data is

mi = ltrue + εi, (2.6)

where εi is an unknown ‘error’ contribution. In this as in all parameter estimation problems,
both frequentist and Bayesian approaches assume the truth of some parametrized model for
the observations, and seek to determine the implications of the data for the values of any
unknown parameters. A Bayesian does this simply by using Bayes’ theorem to calculate
the probabilities of various hypotheses about ltrue, given the data, D = {mi}, and the
background information, I, that specifies the model and anything known about ltrue before
consideration of the data, including the results of any previous measurements. All such
probabilities could be calculated from suitable integrals of the posterior density, p(l | DI),
defined by p(l < ltrue < l + dl | DI) = p(l | DI)dl. Thus specifying p(l | DI) as a function
of l would completely represent the Bayesian solution to this problem. From this function
we could calculate the probability that ltrue is between two values, a and b, simply by
integrating over l,

p(a < ltrue < b | DI) =

∫ b

a

p(l | DI)dl. (2.7)

If our information about possible sources of error leads to the common Gaussian probability
assignment for the values of εi, with zero mean and variance σ2, a simple calculation, using
a uniform prior distribution for l, yields a posterior density for l that is also Gaussian, with
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mean equal to the sample mean, m, and standard deviation from the familiar ‘root-N ’ rule,
σ/

√
N :

p(l | DI) =
N

σ
√

2π
exp

[

−N(l − m)2

2σ2

]

. (2.8)

Using this distribution one can show that there is a probability of 0.68 that l is in the range
m±σ/

√
N , and that p(l | DI) is higher within this region than outside of it. This region is

called a 68% credible region, or a 68% highest posterior density (HPD) region. The details
of this simple calculation, and a discussion of its robustness with respect to the choice of a
prior, are available in Loredo (1990).

2.2 Frequentist Statistics

For a frequentist, the probability p(A) is the long-run relative frequency with which A
occurs in an infinite number of repeated experiments, or throughout an infinite ensemble.
With this understanding of probability, the argument of a probability symbol cannot be
an arbitrary proposition, but must be a proposition about a random variable, a quantity
that can meaningfully be considered to vary throughout a series of repeated experiments
or throughout a physically meaningful ensemble. This greatly restricts the domain of
probability theory. In particular, the probability of an hypothesis is a meaningless concept
in frequentist statistics. This is because a particular hypothesis is typically either true or
false in every repetition of an experiment. Its frequentist probability, to the extent that
it is meaningful, is either one or zero; but understood in this sense, the probability of an
hypothesis is nearly always inaccessible (we do not know if it is true or not), and therefore
scientifically uninteresting. Crudely, frequentist probabilities describe fluctuations, and
hypotheses do not fluctuate.

Denied the concept of the probability of an hypothesis, frequentist statistics rejects
the use of Bayes’ theorem for assessing hypotheses. The mathematical correctness of the
theorem is not questioned, and it is used to calculate distributions of random variables
conditional on the values of other random quantities. But the application of the theorem
to calculate probabilities of hypotheses is forbidden.

Of course, the principal use of probability theory in science is to assess the plausibility
or viability of hypotheses. Barred from calculating the probability of an hypothesis, other
ways must be found to assess hypotheses using frequencies. As a result, the discipline known
as statistics was developed, distinct from, but relying on, probability theory. Statistics
assesses hypotheses by noting that, though an hypothesis is not a random variable, data
may be considered random. Thus hypotheses are assessed indirectly, by making use of the
frequencies of different data sets that one might see if the hypothesis were true. This is
accomplished as follows.

1. First, specify a procedure, ΠS , for selecting an hypothesis based on one or more char-
acteristics of the data, which we denote by S(D) (S may be a vector). The function,
S(D), is called a statistic.

2. Since the data are random, the function S(D) is also random, and is therefore amenable
to a frequentist description. Calculate the sampling distribution of S, p(S | H), from
p(D | H).

3. Use the sampling distribution to characterize the long-term behavior of applying ΠS

to the variety of data predicted by H.
4. Apply ΠS to the actually observed data.
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The role of probability theory in frequentist statistics is limited to steps 2 and 3. In practice,
these steps are sometimes performed with Monte Carlo calculations, and the overall perfor-
mance of ΠS is characterized by averages over the simulated data. Unfortunately, frequen-
tist theory offers no direct guidance for step 1—specifying a procedure and a statistic—or
for choosing what characteristics of the procedure one should calculate in step 3. Intuition
has been the dominant guide for specifying procedures, the relevant characteristics of the
procedures, and the choice of statistic. In practice, a few procedures dominate statistical
practice (estimators, confidence intervals, significance tests), and a few characteristics are
considered most relevant for each (mean and variance of estimators, confidence level of
confidence intervals, significance level [‘false-alarm probability’] of a significance test). But
there is seldom agreement on what statistic is the best to use in frequentist procedures
for any but the simplest problems. Finally, note that the role of probability theory ends
before the procedure is applied to the actually observed data in step 4—just where the
role of probability theory begins in the Bayesian approach. Thus all probabilities quoted
in frequentist analyses are to be understood as properties of the procedure used, not as
properties of the single inference found by applying the procedure to the one observed data
set.

For example, consider again the distance measurement problem whose Bayesian solu-
tion we outlined above. A frequentist would reject Bayesian probability statements about
ltrue, arguing that ltrue remains constant in repeated observations and is therefore not
amenable to a frequentist description. Instead, the frequentist would develop methods that
assess hypotheses about ltrue using only the frequency distribution of the observed widths,
wi, which would vary from observation to observation, and which are therefore legitimate
‘random variables.’

Frequentist approaches to this problem depend on what kind of hypotheses regarding
ltrue one may wish to consider. Two types of hypotheses are commonly considered, the
specification of a single value of l to be considered as an estimate of ltrue (point estimation),
or the specification of a range of l values asserted to contain ltrue (interval estimation). For
point estimation, the procedure adopted is to assert that the true value of the parameter
is equal to the value of the chosen statistic, which is here called an estimator. Usually
several possible estimators are proposed (perhaps as a parametrized class), their sampling
distributions are calculated, and one is chosen as ‘best’ based on how well the estimates
it produces would cluster around ltrue if the observations were repeated many times. For
interval estimation, the procedure adopted is to assert that the true parameter value lies
within an interval-valued statistic, [l1({mi}), l2({mi})]. The confidence level of the interval
is calculated by determining the frequency with which this assertion would be correct in
the long run. Again, intervals based on different possible statistics could be proposed, and
one is selected based on how large the resulting intervals would be in the long run.

In the case of Gaussian errors described above, the accepted frequentist procedures give
results identical to the Bayesian calculation described above: ltrue is estimated to be m, and
a 68% confidence interval for ltrue is m±σ/

√
N . The sample mean is chosen as an estimator

by focusing on two characteristics of the sampling distribution of possible estimators: their
mean (‘center of mass’) and variance. Specifically, one restricts consideration to the class
of estimators with mean equal to the true value of ltrue, so that

∫

l̂(D) p(D | ltrue) dD = ltrue. (2.9)
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This implies that the average of the estimates found in many repetitions will converge to
the true value of l. Estimators that satisfy equation (2.9) are called unbiased. There are an
infinite number of unbiased estimators, but among them the estimator based on the sample
mean converges most quickly, in the sense of having the smallest variance,

∫

[l̂(D) − ltrue]
2 p(D | ltrue) dD. (2.10)

The 68% confidence interval will include ltrue 68% of the time in many repeated experiments;
that is, m will be within ±σ/

√
N of ltrue with a frequency of 0.68:

∫ ltrue+σ/
√

N

ltrue−σ/
√

N

p(l̂(D) | ltrue) dl̂(D) = 0.68. (2.11)

Of course, many intervals satisfy an equation like (2.11); for example, the interval [−∞, m+
0.47σ/

√
N ] is also a 68% confidence interval. Additionally, an interval could be specified by

using some statistic other than the sample mean. The familiar ‘root-N ’ interval is chosen
because it is the shortest 68% interval based on the estimator, or because it is the symmetric
interval.

2.3 Conceptual Comparison of Bayesian and Frequentist Approaches

For the Gaussian example outlined above, Bayesians and frequentists agree on the final
result. Nevertheless, it should be clear that the results mean very different things, not
because Bayesians and frequentists interpret the same calculation differently, but because,
in fact, they calculate very different things. Only by coincidence are their results identical
in the Gaussian case. Unfortunately, the Gaussian distribution is so ubiquitous in statistics
that this coincidence tends to mislead intuition. In the following sections, we will discuss
examples where such a coincidence does not occur. We will first educate our misled intuition
with simple ‘toy’ problems, where the contrast between Bayesian and frequentist methods
is stark, and only then consider more complicated, practical problems.

But before moving on to examples, we will briefly elaborate on some of the conceptual
and methodological differences that are already apparent in the Gaussian example. We want
to know, not only which approach to inference is superior, but also why it is superior. Only
with this understanding can we have confidence in the application of methods to problems
whose complexity prevents our intuition from unambiguously identifying the superior result.

Much can be—and has been—written comparing the conceptual and mathematical
foundations of Bayesian and frequentist statistics; references to some of this literature are
provided in Loredo (1990) and in Lindley (1990), and a useful and extensive discussion is
available in the recent book of Howson and Urbach (1989). Here we will emphasize two
specific points of contrast between Bayesian and frequentist methods that have immedi-
ate practical consequences for scientists with real data to analyze. The examples in the
remainder of this paper will concretely illustrate these points of contrast.
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2.3.1 What statistic should be used?

The first point of contrast is of great practical significance. Bayesian inference is a problem-
solving theory; given a problem, it provides a solution. In contrast, frequentist statistics is a
solution-characterizing theory. It requires the user to come up with tentative solutions, and
merely provides tools for characterizing them. The Bayesian solution to a well-posed prob-
lem is found by calculating the probabilities of the various hypotheses involved, using the
rules of probability theory. In the process, the theory automatically identifies what statis-
tics to calculate to optimally extract information from the data. In contrast, frequentist
statistics does not provide a unique solution to a problem. Instead, it must be presented
with a class of procedures. Probability theory is used to calculate certain properties of
these procedures, and the investigator is left to choose from among them based on these
properties. In fact, the theory does not even specify how these properties should affect the
choice of a procedure. In addition, the theory cannot incorporate prior information of even
the simplest kind, such as mere specification of an allowed range for a parameter, as we
will see in Section 5.

For example, in the Gaussian estimation problem just considered, the Bayesian ap-
proach led directly and uniquely to the familiar result. In contrast, frequentist point esti-
mation required specification of a class of estimators: those that are unbiased. But there is
a certain arbitrariness to this specification, in that the intuitive notion behind bias would be
equally well served by, say, the median or the mode of the sampling distribution, which in
general will be different from the mean (though not in the Gaussian case, which is mislead-
ingly simple). Also, by itself the notion of bias was not sufficient to specify an estimator; in
fact, any estimator can be made unbiased by calculating its bias and subtracting it. Thus
an additional property had to be considered to select from among competing estimators,
the variance of their sampling distributions. Yet the variance of a particular estimator may
increase when its bias is removed, so the relative merits of variance and bias should have
been specified somehow. Finally, as appealing as criteria such as bias and variance may be
to intuition, there is nothing fundamental about them, and, for example, there is a growing
literature on the use of biased estimators (Efron 1975; Zellner 1986). Similar criticisms
may be leveled against confidence intervals.

The practical consequence of frequentist nonuniqueness is that a complicated problem
with a single Bayesian solution may have several frequentist solutions, each based on a
different choice of statistic, and each giving a different answer to a particular question,
with no compelling criteria for deciding between them. A striking example is provided by
analyses of the neutrinos detected from supernova SN1987A. Literally dozens of analyses
of the two dozen detected events have been published, many of them considering the same
model, but differing in choice of statistic, and to varying degrees in the final conclusions
reached, with no compelling arguments for preferring one analysis to another. In fact, most
of these analyses are not even correct from the frequentist viewpoint, most investigators
having confused the concept of a Type I error probability with a confidence level (Loredo
and Lamb 1989, 1992). A correct frequentist analysis of these data is presented in Loredo
and Lamb (1989), and a Bayesian analysis is presented in Loredo and Lamb (1992).
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2.3.2 What alternatives are relevant for inference?

The second point of contrast between Bayesian and frequentist methods concerns the types
of alternatives considered relevant for inference. In many respects, this is the essential
feature distinguishing the approaches. The alternatives whose probabilities are considered
in Bayesian calculations are alternative hypotheses. Those considered in frequentist calcu-
lations are alternative data. This distinction manifests itself in the Gaussian estimation
problem above in two ways. First, the Bayesian result is conditional on the data (see, e.g.,
equation [2.8]), whereas the frequentist result is conditional on a single hypothesis (see, e.g.,
equations [2.9]-[2.11], which are conditional on ltrue). Second, Bayesians consider sums or
averages over hypotheses (the integral in equation [2.8] is over l), whereas frequentists av-
erage over hypothetical data (the integrals in equations [2.9]-[2.11] are over possible sets of
data). This point has been emphasized by Efron (1978). Only in special circumstances are
frequentist data averages numerically equal to Bayesian hypothesis averages. The Gaus-
sian distribution provides one such circumstance because of its symmetry between data and
parameter.

On a purely intuitive level, this distinction should immediately raise doubts about
frequentist methods. After all, in any real experiment, the observed data are the fact,
and it is the possible hypotheses which are hypothetical. That is, we are uncertain about
the hypotheses, not the data. Bayesian inference describes the uncertainty regarding the
hypotheses by calculating the probabilities of those hypotheses conditional on the one fact
we are certain of: the data. Frequentist statistics instead assesses procedures using the
probabilities of hypothetical data conditional on the truth of a particular hypothesis. Yet
the reason we perform experiments is that we do not know what hypothesis is true!

To be fair, some frequentist procedures can be cleverly designed to have characteristics
that are independent of which particular hypothesis (within a class of alternatives) is true.
For example, a special property of the Gaussian distribution makes equation (2.11) correct
for every possible value of ltrue, so the true value need not be known. But this is not generally
possible, particularly in multiparameter problems, or in hypothesis testing situations. In
these cases, one must simply pick an hypothesis (e.g., a model with its parameters fixed at
their best-fit values), and assume it is true to calculate the needed distributions, despite
being virtually certain that this assumption is false. The resulting statistical procedures
are then not rigorously correct, but in frequentist statistics this is often ‘just about the only
game in town’ (Press, et al. 1986).

On a more technical level, averaging over hypothetical data makes frequentist results
depend on the precise nature of data which might have been seen, but were not. Unfor-
tunately, factors irrelevant to the hypotheses under consideration can play an important
role in determining what other data might have been seen, and these factors can affect
frequentist inferences in troubling ways, as will be demonstrated in Section 3. In Bayes’
theorem, the only relevant feature of the data is the dependence of its probability on the
various hypotheses under consideration, not its relationship to other hypothetical data.

Finally, by seeking procedures which have good performance averaged over many hy-
pothetical data, frequentist statistics generally trade off good performance in individual
cases for good long-term performance. We will explicitly demonstrate that this occurs in
Section 3. This occurs because the probabilities characterizing frequentist procedures are
properties of the procedures, and not of the specific conclusions reached from a particular
data set. For example, the probability of 0.68 assigned to the ‘root-N ’ confidence interval in
Gaussian estimation is not a property of the particular interval one would find by applying
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the rule to a particular data set, but is instead a property of the procedure of applying this
rule to many data sets drawn from a Gaussian distribution. One can easily construct other
procedures (for example, procedures that eliminate ‘outlier’ points that are beyond some
threshold from the sample mean) that, for certain data sets, specify the same interval as
the ‘root-N ’ procedure, but assign it a different confidence level, even though the proce-
dures assume the same Gaussian model. This is because frequentist probability theory can
only characterize procedures, not particular inferences. This is made clear in the four step
process outlined in the previous subsection: the role of probability theory ends when the
actual data is analyzed in step 4. Bayesian probability theory works very differently. It
applies probability theory directly to the observed data, seeking the best inference possible
for the single case at hand.

The next two sections explore the ramifications of basing inferences on averages over
hypotheses versus averages over hypothetical data. In Section 3, we demonstrate the irrel-
evance of averaging over hypothetical data, and in Section 4, we demonstrate the necessity
of averaging over hypotheses. Along the way, the nonuniqueness of frequentist procedures
will be illustrated by noting the variety of frequentist solutions to the problems considered.

3. THE IRRELEVANCE OF SAMPLE AVERAGING:
STOPPING RULES AND RECOGNIZABLE SUBCLASSES

3.1 Stopping Rules: The χ2 Goodness-of-Fit Test

After the sample mean and the ‘root-N ’ rule, there is no statistic more familiar to as-
tronomers than Pearson’s χ2 and its generalizations. One of the most widely used statis-
tical methods in astronomy is the χ2 ‘goodness-of-fit’ test which evaluates a model based
on the calculation of the probability P that χ2 values equal to or larger than that actually
observed would be seen if the model is true. If P is too small (the critical value is usually
5%), the model is rejected.

To create a quantity which takes on values between 0 and 1 to replace the straightfor-
ward Bayesian notion of the probability of an hypothesis, goodness-of-fit tests, and many
other frequentist procedures, are forced to consider, not only the probability of seeing the
actually observed data (which is almost always negligible), but the probability of seeing
other hypothetical data—those that would produce a larger χ2 value—as well. This pecu-
liar line of reasoning has troubled scientists and statisticians for as long as such tests have
been advocated. Jeffreys (1939) raised the issue with particular eloquence:

What the use of P implies, therefore, is that a hypothesis that may be true may be
rejected because it has not predicted observable results that have not occurred. This seems
a remarkable procedure. On the face of it the fact that such results have not occurred
might more reasonably be taken as evidence for the law, not against it.

Indeed, many students of statistics find that the unusual logic of P -value reasoning takes
some time to ‘get used to.’

Later critics strengthened and quantified Jeffreys’ criticism by showing how P -value
reasoning can lead to surprising and anti-intuitive results. This is because the reliance
of P -values on unobserved data makes them dependent on what one believes such data
might have been. The intent of the experimenter can thus influence statistical inferences in
disturbing ways. Here is a simple example of this phenomenon that is widely known among
statisticians, but not familiar to most physical scientists (see, e.g., Berger and Berry 1988
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for recent examples and references, and Lindley and Phillips 1976 for a more extensive
pedagogical discussion).

Suppose a theorist predicts that the number of A stars in an open cluster should be a
fraction a = 0.1 times the total number of stars in that cluster. An observer who wants to
test this hypothesis studies the cluster and reports that his observations of 5 A stars out
of 96 stars observed rejects the hypothesis at the traditional 95% critical level, giving a χ2

P -value of 0.03. To check the observer’s claim, the theorist calculates χ2 from the reported
data, only to find that his hypothesis is acceptable, giving a P -value of 0.12. The observer
checks his result, and insists he is correct. What is going on?

The theorist calculated χ2 as follows. If the total number of stars is N = 96, theory
predicts that on the average one should observe nA = 9.6 A stars and nX = 86.4 other
stars. Pearson invented the χ2 test for just such a problem; χ2 is calculated by squaring
the difference between the observed and expected numbers for each group, dividing by
the expected numbers, and summing (Eadie et al. 1971). From the predictions and the
observations, the theorist calculates χ2 = 2.45, which has a P -value of 0.12, using the χ2

distribution for one degree of freedom (given N , nX is determined by nA, so there is only
one degree of freedom). (A more accurate calculation using the binomial distribution gives
P = 0.073, still acceptable at the 95% level.)

Unknown to the theorist, the observer planned the observations by deciding beforehand
that they would proceed until 5 A stars were found, and then stop. So instead of the number
of A and non-A stars being random variables, with the sample size N being fixed, the
observer considers nA,obs = 5 to be fixed, and the sample size to be the random variable.
From the negative binomial distribution, the expected value of N is 5/a = 50, and the
variance of the distribution for N is 5(1 − a)/a2 = 450. Using the observed N = 96 and
the asymptotic normality of the negative binomial distribution, these give χ2 = 4.70 with
one degree of freedom, giving a P -value of 0.03 as claimed. (The exact calculation using
the negative binomial distribution gives P = 0.032.)

The two analyses differ because different ideas about the ‘stopping rule’ governing
the observations lead to different ideas of what other data sets might have been observed.
In this way, two different sample spaces are proposed to describe the same observation,
and many others could be envisaged. Which one of all the possible calculations should be
believed?

Some reflection should make us uneasy about accepting the observer’s analysis. If,
because of poor weather, the observing run had been cut short before 5 A stars were
seen, how then should the analysis proceed? Should it include the probability of poor
weather shortening the observations? If so, doesn’t consistency then demand that it include
the probability of poor weather in the calculation when the observations were able to be
completed? Similar arguments can be made regarding any possible phenomenon that could
have shortened the observing run (equipment failure, sickness, etc.), each resulting in a
different choice for the sample space.

Though these arguments cast doubt on the observer’s analysis, they also cast doubt on
the theorist’s analysis, since this analysis assumed that N was fixed, even though N could
very well vary in repeated observations. In fact, it is essentially impossible to correctly
characterize the frequency distribution of N that would be realized if the observations were
repeated. Yet the intuitions of most scientists are not troubled by this fact: the other values
of N that might have been found, but were not, have no bearing on the evidence provided
by a single data set with a particular value of N .
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The Bayesian calculation (Lindley and Phillips 1976; Berger and Berry 1988) satisfies
this intuitive desideratum. But not only does it not consider other values of N , it also
does not consider other values of nA or nX . In their place it considers other hypotheses
about a. It thus differs from all frequentist calculations, but uses a statistic that can be
approximated by the theorist’s χ2, and accepts the theory (Jeffreys 1939, §5.1). Like its
frequentist counterparts, this calculation requires specification of a sample space in order to
assign a likelihood function. The difference is that the Bayesian calculation focuses on the
functional dependence of the likelihood on the hypotheses, whereas frequentist calculations
focus on the dependence of sampling distributions on the data. As a result, Bayesian
conclusions are independent of features of the sample space that can affect frequentist
conclusions in troubling ways.

To be a bit more explicit, both the binomial distribution and the negative binomial
distribution depend on the value of a in the same way, so Bayesian calculations by the the-
orist and observer would lead to the same conclusion. But the distributions differ in their
dependences on N and nA,obs, causing frequentist analyses to reach differing conclusions,
depending on which distribution is used. Similarly, though variations in weather or equip-
ment reliability could affect N and nA,obs, the probabilities of bad weather or equipment
failure are independent of a, and a Bayesian calculation with sample spaces including such
phenomena will also reach the same conclusion.

3.2 Recognizable Subclasses: Estimators and Confidence Intervals

In February of 1987, approximately two dozen neutrinos were detected from supernova
SN1987A in the Large Magellanic Cloud at three detectors located in Japan, the United
States, and the Soviet Union. The energies and arrival times of each of the neutrinos were
measured. The data are adequately modeled by thermal emission from a sphere with expo-
nentially decaying temperature. The event arrival times and energies allow measurement
of the initial temperature and decay time of the emitting surface, as well as the start time
of the neutrino burst.

Many facets of the emission and detection processes make the analysis of these data
very complicated (Loredo and Lamb 1989, 1992), obscuring some of the fundamental diffi-
culties arising in a frequentist analysis of these data. To illustrate one of these difficulties,
of broad significance for statistics, consider the simplified problem of inferring only the
starting time of the burst from the event arrival time data, ignoring the energy data and
assuming that the decay time is known. Accurate inference of arrival times is often of great
interest to astronomers, particularly when observations from different detectors are to be
combined; see, e.g., Lobo (1990).

In this simplified problem, the probability density that an event will arrive at time t
is given by a truncated exponential distribution,

p(t) =

{

0, if t < t0;
1
τ exp(− t−t0

τ ), if t ≥ t0,
(3.1)

with τ known; we want to estimate t0 from the sample. This problem is mathematically
identical to a problem considered by Jaynes (1976). We follow his analysis here.

Consider first a frequentist analysis. Since t0 plays the role of a location parameter,
like the mean of a Gaussian, we can construct a statistic by relating the mean value of t to
t0 (this is an example of the ‘method of moments’ advocated by Pearson; see Eadie et al.
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1971). The population mean is 〈t〉 ≡
∫

t p(t)dt = t0 + τ , therefore an unbiased estimator
of t0 is

t̂ ≡ 1

N

N
∑

i=1

(ti − τ). (3.2)

We can calculate the sampling distribution of t̂ analytically using characteristic functions
(related to equation (3.1) by a Fourier transform); the result is (Jaynes 1976),

p(t̂ | t0) = (t̂ − t0 + τ)N−1 exp
[

−N(t̂ − t0 + τ)
]

. (3.3)

We can use this to get a confidence interval for t0 of any desired size.
Now suppose that in a particular observation, with τ = 1, we observe three events at

times t = 12, 14, and 16. From (3.2), we would estimate t0 to be t̂ = 13, and from (3.3),
the shortest 90% confidence interval for t0 can be calculated to be

12.15 < t0 < 13.83. (3.4)

But wait; the earliest event was observed at t1 = 12, yet both the estimate of the burst
start time, and the entire 90% interval, are at later times, t > 12, where we know it is
impossible for t0 to lie!

What is going on here? It is certainly true that if we repeat this experiment lots of
times with simulated data drawn from (3.1), the average of the t̂ values will converge to
the true value of t0, and the 90% confidence regions will include the true value in 90% of
the simulations. But one can show that the confidence region will not include the true
value 100% of the time in the subclass of samples that have t̂ > t1 + 0.85, and we can tell
from the data whether or not any particular sample lies in this subclass. The worse-than-
stated performance of the confidence region in this subclass also implies that confidence
regions will be wider than they need to be for samples that do not lie in this subclass; poor
behavior within the bad subclass is made up for by better-than-stated behavior outside the
bad subclass.

This problem is called the problem of recognizable subclasses: a statistic that is good in
the long-run may be poor in individual cases that can be identified from the data. Frequentist
procedures, by seeking good performance averaged over many hypothetical data, can throw
away useful information that is relevant for the single-case inference. This phenomenon is
reviewed by Cornfield (1969), who argues that to avoid it, one is forced to the Bayesian
approach. The phenomenon of recognizable subclasses, which arises because of the role of
long-term behavior in frequentist statistics, emphasizes that,

The value of an inference lies in its usefulness in the individual case, and not in its
long-run frequency of success; they are not necessarily even positively correlated. The
question of how often a given situation would arise is utterly irrelevant to the question
how we should reason when it does arise. (Jaynes 1976)

The Bayesian solution to this problem is both simple and intuitively appealing. The
likelihood of the data, given the model, I, specified by equation (3.1) with τ = 1, is just
the product of N truncated exponentials at times ti,

p({ti} | t0I) =

{

exp(Nt0) exp
(

−∑N
i=1 ti

)

, if t0 ≤ t1;

0, if t0 > t1.
(3.5)
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Using a uniform prior for t0, which expresses ignorance of a location parameter (see Section
6), the normalized posterior is, from Bayes’ Theorem,

p(t0 | {ti}I) =

{

N exp [N(t0 − t1)] , if t0 ≤ t1;
0, if t0 > t1.

(3.6)

This reversed truncated exponential distribution is our full inference about t0. We can
summarize it in various ways. The most probable value of t0 is just t1 = 12; this is
certainly reasonable, though the mode is not a good summarizing value for such a skew
distribution. A more characteristic value is the mean value, which is x1 − 1/N = 11.66.
The 90% credible interval is 11.23 < t0 < 12.0; this is entirely in the allowed range, and
is less than half the size of the frequentist confidence interval. The Bayesian calculation
has given an entirely reasonable answer with over twice the precision of the frequentist
inference; moreover, the most complicated mathematics it required was the evaluation of
the integral of an exponential.

Of course, if the poor behavior of the t̂ statistic was noticed, a frequentist hopefully
could develop some other procedure that behaves better, probably appealing to such notions
as sufficiency and ancillarity to try to reduce the effect of recognizable subclasses. But such
considerations never even arise in the Bayesian analysis; probability theory automatically
identifies what statistic to use, and expert knowledge of such notions as sufficiency and
ancillarity (which are of limited applicability anyway) is not required.

4. THE RELEVANCE OF HYPOTHESIS AVERAGING:
NUISANCE PARAMETERS

An immediate consequence of the rejection of the concept of the probability of an hypoth-
esis is that no frequentist procedures are available for assessing propositions like, ‘either
hypothesis H1 or hypothesis H2 is true.’ A Bayesian would simply calculate the probability
of this proposition, denoted H1 +H2, where the ‘+’ sign here represents logical disjunction
(logical ‘or’). From the sum rule and the product rule, one can derive the disjunction rule,

p(H1 + H2 | I) = p(H1 | I) + p(H2 | I) − p(H1H2 | I). (4.1)

If, as is often the case, the hypotheses under consideration are exclusive, so that only one
of them may be true, then p(H1H2 | I) = 0, and the disjunction rule takes the familiar
form,

p(H1 + H2 | I) = p(H1 | I) + p(H2 | I). (4.2)

This entire section is devoted to the important consequences of the absence of a frequentist
counterpart to equation (4.2).

What types of problems have a structure requiring us to consider disjunctions of hy-
potheses? In fact, many, and perhaps most real statistical problems have this structure.
But because frequentist methods cannot deal with such problems directly, simpler problems
are often substituted for the real problem without comment. This is done so commonly
that few are aware of it.

For example, whenever we want to assess the viability of a parametrized model as a
whole, we are in a situation that logically requires consideration of disjunctions of hypothe-
ses. This is because data never specify with certainty a single point in parameter space as
the only possible one; rather, the data lead us to prefer certain regions of parameter space
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over others. Thus a full assessment of a model should take into account the probabilities
that the model is true with every set of parameter values not ruled out by the data. Un-
able to do this, frequentist hypothesis tests assess a model by considering only the best-fit
parameter point. A consequence is that there is no fully satisfactory way for comparing
different models with differing numbers of parameters. Consider comparing two models
with the χ2 test, one of which includes the other as a special case (say, when an additional
parameter is zero). When attention is fixed only on the best-fit parameter points, the more
complicated model will never fit worse, and will almost always fit better. Given the two
values of χ2 resulting from the fits, frequentist attempts to justify a choice of one model over
the other first try to assess whether the more complicated model fits ‘significantly better’
by considering some additional statistic (such as one of the possible F -statistics that can be
created from the two χ2 values). If it does not fit significantly better, there are no formal
grounds for preferring either model to the other, but the simpler model is always chosen,
‘Ockham’s razor’ being invoked as making the simpler model more plausible a priori.

In contrast, Bayesian model comparison methods proceed straightforwardly by calcu-
lating the probability that each model is true (assuming, as do frequentist methods, that
the true model is one of the ones being considered). This probability is calculated by
integrating over the entire parameter space, using the continuous counterpart to equation
(4.2). Instead of invoking Ockham’s razor to assign simpler models larger a priori probabil-
ities, one discovers that Bayesian methods explain and justify Ockham’s razor: even when
models are assigned equal prior probabilities, Bayes’ theorem shows that simpler models
are preferred a posteriori unless more complicated models fit significantly better. In effect,
the integration over parameter space penalizes more complicated models if their extra de-
grees of freedom are wasted. This is accomplished without having to invent an arbitrary
comparison statistic, without having to select an arbitrary critical significance level, and
without having to invoke Ockham’s razor. Also, the Bayesian calculation can sensibly deal
with the possibly more subtle case of comparing two models that have the same number
of parameters but that differ in complexity. Further discussion of this aspect of Bayesian
methods is available in Loredo (1990) and in recent tutorials by Garrett (1991) and by
Jefferys and Berger (1992). Worked applications in the physical and computational sci-
ences can be found in Bretthorst (1988, 1990a,b), MacKay (1992), and Gregory and Loredo
(1992).

4.1 Nuisance Parameters

In this Section, we will focus on another somewhat simpler class of problems whose solution
requires consideration of disjunctions of hypotheses. These are problems with nuisance
parameters: multiparameter problems in which one is particularly interested in only a
subset of the parameters. Such problems arise in many ways. In some cases, modeling
data relevant to the phenomenon of interest may require the introduction of parameters
unrelated to the phenomenon, such as the intensity of a background rate or parameters
related to the detector. In other cases, some of the parameters describing the phenomenon
may be intrinsically uninteresting, as may be true of the phase of a periodic signal whose
frequency and amplitude are of sole interest. Even when all the parameters describing a
phenomenon are intrinsically interesting, it may be necessary to consider the implications of
the data for some subset of the parameters for a variety of reasons. A particular scientific
question may require attention to be focused on a subset of the parameters. Graphical
presentation of the implications of the data may require consideration of one- and two-
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dimensional subsets of the parameters; in fact, this may be the most common situation
in which methods summarizing inferences for subsets of parameters are required. Finally,
temporary reduction of the dimensionality of a problem, particularly when such a reduction
can be accomplished analytically, can greatly increase its numerical tractability.

To formulate such problems mathematically, let θ represent the parameters of interest,
and let φ represent the nuisance parameters, also known as incidental or uninteresting
parameters. Given some data, we would like to make inferences about θ without reference
to φ.

The Bayesian approach to this problem is straightforward: we simply calculate the
posterior distribution for θ, p(θ | DI). This is done as follows. First, with Bayes’ theorem,
we calculate the full joint posterior distribution, p(θ, φ | DI). Then the disjunction rule
yields (Loredo 1990),

p(θ | DI) =

∫

p(θ, φ | DI) dφ. (4.3)

For historical reasons, the process of integrating over nuisance parameters is called marginal-
ization, and the resulting distribution, p(θ | DI), is called the marginal distribution for θ.

In contrast to the straightforward and unique Bayesian marginalization procedure,
there is no universally accepted frequentist answer to the question of how to deal with
nuisance parameters. Basu (1977) remarks, ‘During the past seven decades an astonishingly
large amount of effort and ingenuity has gone into the search for reasonable answers to this
question,’ and goes on to list nine different categories of frequentist solutions. Dawid (1980)
also discusses a variety of frequentist methods for dealing with nuisance parameters. Of
these, only two are commonly used in astrophysics, and we will focus on them here.

The first method is to estimate all of the parameters by constructing suitable estima-
tors, θ̂ and φ̂, and then to replace φ by its estimate, making further inferences about θ
assuming φ = φ̂. We shall refer to this as the conditional method, since it makes inferences
conditional on the hypothesis that φ = φ̂. The weaknesses of this procedure, which takes
no account at all of the uncertainty in the value of φ, should be obvious. In particular,
if the model leads to strong correlations between φ and θ, the uncertainty in θ can be
greatly underestimated by this procedure. Few careful scientists would knowingly adopt
such a procedure unless φ were extremely well determined by the data. Yet some widely
used procedures implicitly treat nuisance parameters in just this way. For example, most
periodogram-based methods for measuring the frequencies of periodic signals implicitly as-
sume that the true phase of the signal is the best-fit phase (see, e.g., Scargle 1982). If
these procedures were otherwise optimal, they could underestimate the uncertainty of the
frequency and strength of a signal.

The second method is more sophisticated, and is based on the joint likelihood function
for the parameters, L(θ, φ) ≡ p(D | θ, φ). The intuitively appealing notion on which all
likelihood methods are based is that the hypothesis with the highest likelihood among those
being considered is to be preferred. Thus to eliminate φ from consideration, a new projected
likelihood function, Lp(θ), is created by maximizing L(θ, φ) with respect to φ at each value
of θ, that is,

Lp(θ) = max
φ

L(θ, φ), (4.4)

where maxφ denotes the maximum with respect to φ with θ fixed. Inferences about θ are
then made from Lp(θ) as if it were a normal likelihood function. The projected likelihood
function is also called the profile likelihood or the eliminated likelihood.
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As suggested by its name, contours of the projected likelihood function correspond
to the geometric projection of contours of the full likelihood function into the subspace
spanned by the interesting parameters. If the conditional method described above were
used with the likelihood function, it would correspond to making inferences based on a
cross section of the likelihood function rather than a projection. Just as the shadow of an
object onto a plane is generally larger than, and never smaller than, any cross section of the
object parallel to that plane, so projected likelihood functions are generally broader than
conditional likelihood functions, and in this manner attempt to account for the uncertainty
in the nuisance parameters.

When the errors are described by a Gaussian distribution, the likelihood function is
proportional to exp(−χ2/2), with the familiar χ2 statistic appearing in the exponential.
Then use of the projected likelihood function corresponds to use of a projected χ2 statistic,
where the projection is found by minimizing χ2 with respect to the nuisance parameters.
This method for treating nuisance parameters is widely used in astrophysics, and particu-
larly in X-ray astronomy, where it has been carefully described by Lampton, Margon, and
Bowyer (1976). More recently, its use has been advocated by Press, et al. (1986). Both
groups of authors are careful to note the inadequacy of the conditional method.

For linear models with Gaussian errors and uniform prior densities for the parameters,
Bayesian marginalization over φ leads to a marginal distribution for θ that is precisely pro-
portional to the frequentist projected likelihood function, both functions being themselves
Gaussian. Thus both methods lead to the same final inferences. But again, this correspon-
dence is a consequence of special properties of the Gaussian distribution, and will not hold
for nonlinear models or for non-normal errors. Thus inferences based on marginal distribu-
tions and on projected likelihoods, even in the absence of important prior information, will
differ, and we must ask: which inferences should we believe?

To address this question, we will analyze a simple problem with both methods, but
arrange the problem to magnify the difference between them to the point where our intuition
can unambiguously decide which method is superior.

4.2 Coin Tossing With a Nuisance Parameter

One of the most common problems for illustrating statistical ideas is the determination of
the bias of a coin. We will now consider a biased coin problem, introducing a nuisance
parameter associated with the date of the coin. The following problem is adapted from
Basu (1975).

Imagine that we have a bucket with 50 coins in it. We know that 40 of the coins, one
each from the years 1951 to 1990, are biased in the same (unknown) direction, and that
the remaining 10 coins are biased in the other direction. Further, we know that the 10
‘minority’ coins all have the same (unknown) date, also in the period 1951 to 1990. We
want to know the direction of the bias—heads or tails—of the majority of coins.

In terms of the obligatory greek letters, we can formulate this problem as follows. Let
θ be the unknown bias of the majority, θ = H (heads) or T (tails). Let φ be the year of
the coins with the opposite bias, φ = 1951 to 1990. We want to determine θ; the additional
parameter, φ, is a nuisance parameter.

Consider inferring θ from two possible data sets. To obtain the first data set, we take a
single coin from the bucket and, either by measuring it or flipping it many times, determine
that the direction of its bias, B, is heads: B = H. But we throw it back into the bucket
before noting its date. We obtain the second data set by taking a single coin from the
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bucket, finding that for it B = H, and additionally noting that it’s date, Y , is 1973. If we
have to draw a conclusion about θ from such meager data, what conclusion should we draw
in each case?

Intuition suggests that, since we don’t know the date identifying the 10 coins with the
different bias, each data set provides us with the same information about the bias of the
majority of the coins. Since we are much more likely to choose a coin from the majority,
we would conclude in both cases that the majority are biased towards heads: θ = H. We
wouldn’t feel certain of this, but it is clearly the most plausible choice.

Now we will analyze the two data sets using likelihood methods. The first data set is
the single datum, B = H. We begin by noting that knowledge of the date, φ, specifying
the special coins cannot help us to determine the bias of a particular coin of unknown date,
so the probability of this data is independent of φ: p(B | θ, φ) = p(B | θ). Thus for the first
data set, the problem is reduced to one without a nuisance parameter. The likelihoods of
the two possible values of θ are just the probabilities of seeing B = H for each value:

L(θ = H) ≡ p(B = H | θ = H) =
40

50
= 0.8 (4.5a)

L(θ = T ) ≡ p(B = H | θ = T ) =
10

50
= 0.2. (4.5b)

Thus our best guess, in the maximum likelihood sense, is that the bias of the majority is
toward heads, in agreement with our intuition.

Now consider the analysis of the second data set, B = H, Y = 1973. Here we have
information about the date, so we will calculate the joint likelihood of θ and φ, and then
eliminate φ by maximizing with respect to it. By the product rule, we can break up the
joint likelihood, L(θ, φ) ≡ p(B = H, Y = 1973 | θ, φ), into two factors,

L(θ, φ) = p(Y = 1973 | B = H; θ, φ) p(B = H | θ, φ). (4.6)

The second factor we’ve already calculated for the analysis of the first data set, so we need
only calculate the first factor. This is the probability that a coin biased toward heads has
the year 1973. If the bias of the majority is toward heads, then this probability is simply
1/40, independent of the value of φ. But if the bias of the majority is toward tails, then
the coin must be in the minority; so p(Y = 1973 | B = H, θ = T, φ) will be 1 if φ = Y , and
zero otherwise. Thus,

p(Y = 1973 | B = H, θ, φ) =











1/40, for θ = H, φ = 1973;
1/40 for θ = H, φ 6= 1973;
1, for θ = T , φ = 1973;
0, for θ = T , φ 6= 1973.

(4.7)

Multiplying equations (4.7) by the appropriate factors in equations (4.5), the joint
likelihoods for the various values of θ and φ are,

L(θ, φ) =







1/50 = 0.02, if θ = H, for any φ;
10/50 = 0.2, if θ = T and φ = 1973;
0, otherwise.

(4.8)
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Maximizing over φ, the projected likelihood for θ has the values,

Lp(θ) =

{

0.02, if θ = H;
0.2, if θ = T .

(4.9)

The projected likelihood method leads to the conclusion that the direction of the bias of
the majority is toward tails!

This is obviously a ridiculous conclusion. What has happened here? Consider the
Bayesian solutions to these problems. To calculate the posterior probabilities of the various
possibilities, we must assign prior probabilities to the values of θ and φ. Before considering
the data, we have no reason to prefer θ = H to θ = T , thus we assign p(θ = H) = p(θ =
T ) = 1/2. Similarly, we assign p(φ) = 1/40, since there are 40 possible choices for φ, and we
have no reason to prefer one to any other a priori. With uniform prior probabilities, Bayes’
theorem gives posterior probabilities that are proportional to the likelihood functions, with
the constant of proportionality chosen to make the distributions normalized.

For the first data set, Bayes’ Theorem, using the likelihoods calculated above, gives
posterior probabilities proportional to equations (4.5); in fact, the proportionality constant
is just 1:

p(θ | B = H) =

{

0.8, for θ = H;
0.2, for θ = T .

(4.10)

We reach the same conclusion as the frequentist: the bias of the majority of coins is probably
toward heads.

For the second data set, we similarly find joint posterior probabilities proportional to
equations (4.8),

p(θ, φ | B = H, Y = 1973) =

{

0.02, if θ = H, for any φ;
0.2, if θ = T and φ = 1973;
0, otherwise.

(4.11)

But to summarize the implications of the data for θ alone, we marginalize with respect to
φ, summing (not projecting) the joint distribution over φ, to find,

p(θ | B = H, Y = 1973) =

{

0.8, for θ = H;
0.2, for θ = T .

(4.12)

This posterior distribution is the same as equation (4.10), so the Bayesian concludes that
both data sets yield the same information regarding θ, nicely agreeing with our intuition.

This example demonstrates that the projected likelihood method advocated by Lamp-
ton, Margon, and Bowyer (1976) and by Press et al. (1986) is fundamentally flawed. The
reason is that, though projection identifies which particular hypothesis is most favored by
the data, it takes no account of the actual number of alternative hypotheses. In the example
just discussed, of all the possible hypotheses, the one hypothesis with θ = T and φ = 1973
has higher probability than any particular one with θ = H. But there are so many more of
the latter that it is more plausible that one of them is true than that the θ = T hypothesis
is true. The only way this can be taken into account is by summing over hypotheses, a
process denied to frequentists by the frequency definition.
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4.3 Frequentist Use of the Likelihood Function

In closing this Section, we note in passing that the discussion of this and the previous Sec-
tions addresses an issue that arises for many when first exposed to the Bayesian approach.
Noting that the data enter Bayes’ theorem through the likelihood function, it is tempting
to assert that use of likelihood methods, though perhaps frequentist, should produce results
essentially equivalent to Bayesian methods.

At least three objections can be made to this claim. First, likelihood methods ‘ig-
nore’ prior information, or more precisely, assume very specific, uniform prior information.
In many problems, our prior information is so much less informative than the data that
‘ignoring’ the prior information is completely reasonable, but this is not always the case,
particularly when data are sparse, or when there is important prior information (as in the
analysis of inverse problems, or the combination of results of different experiments).

Second, even when the use of a uniform prior is justified, likelihood methods still share
many of the defects of other frequentist procedures to the extent that they rely on averages
over hypothetical data (as in the construction of confidence intervals or the calculation of
significance levels). In particular, the results of such methods may be sensitive to irrelevant
features of the sample space, as discussed in Section 3. There, the observer and the theorist
used different likelihood functions for the same data and theory (negative binomial and
binomial likelihoods, respectively). But though these likelihood functions differ in their
dependences on the data, they agree in their dependences on the parameter, which is the
only aspect of the likelihood function relevant to the Bayesian calculation. These two
objections are further elaborated upon in Basu (1975), Berger and Wolpert (1984), and
Berger and Berry (1988).

The third objection is related to equation (4.2). It is that the likelihood is a point
function, not a set function or measure function (Basu 1975). That is, it makes no sense to
speak of the likelihood that either H1 or H2 is true, because a likelihood is a probability,
not of an hypothesis, but of data. Thus likelihoods of different hypotheses cannot be added.
For hypotheses labeled by a continuous parameter, say θ, this is reflected in that L(θ) is
a point function ascribing a likelihood to each value of θ, whereas a Bayesian posterior
distribution, p(θ | DI), is a density, ascribing probabilities to intervals of θ. A consequence
is that the integral of L(θ) need not be unity; in fact, such an integral has no meaning
within frequentist statistics. This property of the likelihood function is an objection to its
use because many problems require a set function for their solution—just those problems
that a Bayesian would address with equation (4.2).

The examples we present here illustrating these objections demonstrate that, though
likelihood methods focus on the correct function, they use it improperly, and that a fully
Bayesian calculation is required.
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5. INFERENCE WITH THE POISSON DISTRIBUTION

Astronomers frequently observe distributions of discrete events, be they macroscopic events
such as the occurrence of a supernova or the location of a galaxy, or microscopic events such
as the detection of particles or radiation quanta from an astrophysical source. Often our
information (or lack thereof!) about the relevant processes leads us to model the data with
the Poisson distribution (see Jaynes 1990 for an instructive derivation of this distribution).
In this Section we will discuss some simple but common problems requiring inferences based
on the Poisson distribution. These show how the considerations of the previous Sections
affect inferences in real, practical problems. For concreteness, we will discuss temporally
distributed events; analyses of events distributed in space, angle, redshift, or energy, for
example, would proceed in an analogous fashion.

The basic datum for temporally distributed events is the number of events, n, detected
in some time interval, T . The Poisson distribution relates this datum to a rate function,
r(t; θ), with parameters θ, such that the probability of the datum (the likelihood function)
is,

p(n | θI) =
(rT )n

n!
e−rT . (5.1)

If r(t) varies significantly with time over the interval T , then rT should be replaced by the
integral of r(t) over the interval.

Two characteristics of the Poisson distribution complicate frequentist analyses. First,
the distribution connects a real-valued quantity, r, with an integer-valued datum, n; it is
not at all symmetric between data and parameters, as is the Gaussian distribution. Second,
there is important prior information: r must be non-negative.

When n and rT are large, the Poisson distribution can be accurately approximated
with a Gaussian distribution, allowing straightforward use of frequentist statistics such
as Gaussian confidence intervals or χ2. But astronomers frequently find themselves in
situations where such an approximation is unjustified, but where a rigorous and precise
inference is still required. Indeed, this is the rule rather than the exception in some fields,
such as my own field of high energy astrophysics, where the great expense of an experiment
or the uniqueness of the observed phenomenon makes it impossible to ‘go out and get more
data’ so that Gaussian approximations can be used. In such cases, we must work directly
with the Poisson distribution, without approximation.

5.1 Estimating a Poisson Mean

We first consider the simplest case: inferring the magnitude of a constant rate, r, from a
single measurement of n events in a time T . The Bayesian inference for r is found by using
Bayes’ theorem, equation (2.4), to find a posterior distribution for r, p(r | nI), where I
represents the information that r and n are connected by the Poisson distribution, and any
other information we may have about r and n.

Bayes’ theorem requires a likelihood function p(n | rI), a prior density p(r | I), and a
prior predictive distribution, p(n | I). The likelihood function is given by equation (5.1). In
addition to the likelihood function, the background information, I, must allow us to assign
a prior density to r, from which we can calculate the prior predictive probability according
to equation (2.5). Deferring a more careful discussion of priors to the following Section,
we here adopt a uniform prior for r between the lower limit of r = 0 and some upper limit
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rmax,

p(r | I) =
1

rmax
. (5.2)

The upper limit is required to allow us to make the prior ‘proper,’ that is, normalized.
In principle, there is always some known upper limit; for example, we know the radiation
intensity from some source could not be so large that it would have vaporized the detector!
In practice, the actual value of this limit will usually have a negligible affect on the resulting
inferences. Indeed, in most problems where limits are required to make priors proper, Bayes’
theorem is perfectly well behaved in the limit where the prior range is infinite. That will
be the case here.

The prior predictive distribution—the normalization constant for Bayes’ theorem—is
found by integrating the prior times the likelihood with respect to r. This gives,

p(n | I) =
Tn

n!

∫ rmax

0

dr rne−rT

=
1

Trmax
· γ(n + 1, T rmax)

n!
, (5.3)

where γ(n, x) ≡
∫ x

0
dxxn−1e−x is the incomplete Gamma function. Combining this equation

with the prior and the likelihood, the posterior distribution for r is,

p(r | nI) =
T (rT )ne−rT

n!
· n!

γ(n + 1, T rmax)
, for 0 ≤ r ≤ rmax. (5.4)

Note that the normalization constant, rmax, has cancelled out, so that the posterior depends
on the prior range only very weakly, through the incomplete gamma function factor (which
appears so that the posterior is normalized over the finite prior range). In fact, if the prior
range is large, so that Trmax � n, then γ(n + 1, T rmax) ≈ Γ(n + 1) = n!, and the posterior
is just the first factor in equation (5.4),

p(r | nI) =
T (rT )ne−rT

n!
, for r ≥ 0. (5.5)

Rainwater and Wu (1947) proposed using this distribution for analyzing nuclear particle
counting data.

We could have derived this result in one line by arguing that, with a constant prior,
the posterior is simply proportional to the likelihood; equation (5.5) is simply the likelihood
function with a factor of T added so that it is normalized when integrated over r. We have
followed a more rigorous path to demonstrate two facts of some practical significance. First,
we have demonstrated that prior information may only weakly affect posterior inferences:
equation (5.4) has a very weak dependence on rmax, so that it is usually well approximated
the simpler equation (5.5). Second, we have shown rigorously that a legitimate, normalized
posterior results from considering the limit of infinite rmax, and that this posterior is the
same posterior one would find by taking the prior to be constant over an infinite range,
and hence improper. This is important because improper priors, considered as the limit
of a sequence of proper priors, are often convenient expressions of initial ignorance, and
it is convenient to know that the limiting process need not be explicitly carried out. If
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the limit does not exist, the product of the (improper) prior and the likelihood will not be
normalizable, signaling the investigator that more information must be specified to make
the problem well-posed.

The posterior distribution is the full Bayesian inference for r. But for graphical or
tabular display, it can be summarized in various ways. The mode (most probable value
of r) is n/T , the posterior mean is 〈r〉 ≡

∫

dr rp(r | nI) = (n + 1)/T , and the posterior

standard deviation is 〈r2 − 〈r〉〉1/2 =
√

n + 1/T . When n is large, the Bayesian inference
thus agrees with the standard (n ± √

n)/T estimate from a Gaussian approximation. But
when n is small, the posterior is not at all symmetric about the mode, and these numbers
do not adequately summarize the implications of the data. A more descriptive summary
would be the posterior mode and the boundaries of a credible region containing, say, 95%
of the posterior density. For example, if one event were seen, the most probable value of r
would be 1/T , and the 95% credible interval would extend from r = 0 to r = 4.74/T .

It is nearly always the case that the signal whose intensity, s, we are interested in is
measured with contamination by some background signal with rate b. If b is known, the
Bayesian inference for s follows from the above analysis by setting r = s + b, so that

p(s | nbI) = C
T [(s + b)T ]ne−(s+b)T

n!
, (5.6)

where C = 1/p(n | bI) is a normalization constant that can be easily found by expanding
the binomial (s + b)n and integrating over s. This gives

C =

[

n
∑

i=0

(bT )ie−bT

i!

]−1

. (5.7)

Helene (1983) proposed using equation (5.6) for analyzing multichannel spectra produced
in nuclear physics experiments. Kraft, Burrows, and Nousek (1991; hereafter KBN) provide
an excellent discussion of its application to astrophysical data, including a comparison with
a frequentist solution to this problem.

Equations (5.5) and (5.6) are both useful and interesting. What is perhaps most
interesting is the ease with which they are found within the Bayesian paradigm. Indeed,
the problems in this Section are among the very first I tried to solve when I first learned
about Bayesian inference, and here I am not alone (Gull 1988 describes a similar experience).
But despite these being ‘beginner’ Bayesian problems, finding frequentist solutions to these
problems is difficult. The frequentist counterpart to equation (5.5) (the b = 0 case) has
been thoroughly discussed by Gehrels (1986), who points out that the discreteness of the
data makes it impossible to find a rigorous confidence interval for r (one which covers the
true value of r with a long-term frequency that is independent of r). Instead, a conservative
interval must be used, so that the 68% interval covers the true value of r at least 68% of
the time. In fact, when the true rate is small, the standard intervals described by Gehrels
cover the true rate 100% of the time.

Physicists have not found it straightforward to extend this frequentist result to cases
with b 6= 0. Hearn (1969) presented an incorrect procedure for use by nuclear physicists
that O’Mongain (1973) applied to observations of astrophysical gamma-ray sources; only
recently have Li and Ma (1983) pointed out that Hearn’s method is incorrect. Intuition
suggests a simple procedure: estimate the total rate, and simply shift the estimate and its
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confidence region down by b. Sard and Sard (1949) show that the resulting point estimate
of s is a good frequentist estimate in the sense of being unbiased. KBN further note that
the shifted confidence interval, truncated at s = 0, is also a rigorously correct confidence
interval; that is, following this procedure will cover the true value with the stated frequency.
Yet simple subtraction of the background will often lead to negative signal estimates when
the signal rate is small. Similarly, KBN emphasize that though shifted truncated intervals
have the stated frequency coverage, such intervals collapse to zero size (at s = 0) if, as can
happen, the signal is weak and the number of background counts in the sample is somewhat
below bT . These intervals are therefore unacceptable.

The strange behavior of these b 6= 0 frequentist estimates occurs for two reasons:
the presence of irrelevant subclasses in the sample space, and the inability of frequentist
methods to deal with cogent prior information of even the simplest kind. The sample
space used to derive the interval includes hypothetical data sets in which the number of
background counts is larger the the total number of background and signal counts in the
actual data. This class of data is clearly irrelevant to the analysis of the actual data;
considering it can cause the interval to include negative values of s. The prior information
that s ≥ 0 must then be used to truncate the region at s = 0; but though this leads to
regions with the stated frequency of coverage, it causes the region to collapse to zero size
when the uncorrected region lies completely below s = 0.

Only very recently has Zech (1989) found a frequentist procedure that avoids this
behavior. He accomplishes this by making the sample space depend on the actually observed
data: only hypothetical data sets with numbers of background counts ≤ N are considered.
By a mathematical coincidence similar to that arising with the Gaussian distribution, his
result gives intervals identical to Bayesian credible intervals calculated with equation (5.6)
(Jaynes 1976 discusses a similar such coincidence with the Poisson distribution). In fact,
Zech found the procedure by looking for a frequentist interpretation of the Bayesian result.
Zech’s procedure is essentially what a statistician would call ‘conditioning on the value of an
ancillary statistic,’ the ancillary statistic here being N . Though this leads to an acceptable
procedure in this case, ancillary statistics are not in general available in problems with
recognizable subclasses. Finally, the use of ancillaries is somewhat inconsistent from the
frequentist viewpoint, and thus controversial: if one accepts that inferences should be
conditional on some feature of the data, why not condition completely on the data, as
Bayesian procedures do?

5.2 Analysis of ‘On/Off’ Measurements

In our derivation of equation (5.6), we assumed that the background rate was known. More
frequently, the background rate is itself measured by counting events in some time interval,
and so is known imprecisely. Inferring the signal strength when the background is itself
imprecisely measured is called an ‘On/Off’ signal measurement: one points the detector
‘off source’ to measure the background, and then ‘on source’ to measure the signal plus
background. From these data we seek inferences about the signal strength alone, without
reference to the background strength. Such inferences might be summarized as points with
error bars on a plot of count rates versus time or energy, for example. Thus this is a problem
with a nuisance parameter: the background rate.

The usual approach to this problem is to use the ‘off’ measurement to obtain an
estimate of the background rate, b̂, and its and standard deviation, σb, and to use the ‘on’
measurement to find an estimate of the signal plus background rate, r̂, and its standard
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deviation, σr. The signal rate is then estimated by ŝ = r̂−b̂, with variance σ2
s = σ2

r +σ2
b (see,

e.g., Nicholson 1966). This procedure gives the correct result when applied to signals which
can be either positive or negative, and for which the Gaussian distribution is appropriate.
Thus it works well when the background and signal rates are both large enough so that the
Poisson distribution is well-approximated by a Gaussian. But when either or both of the
rates are small, the procedure fails. It can lead to negative estimates of the signal rate, and
even when it produces a positive estimate, both the value of the estimate and the size of
the confidence region are corrupted because the method can include negative values of the
signal in a confidence region.

These problems are particularly acute in gamma-ray and ultra-high energy astro-
physics, where it is the rule rather than the exception that few particles are counted, but
where one would nevertheless like to know what these sparse data indicate about a possible
source. Given the weaknesses of the usual method, it is hardly surprising that investigators
believe that ‘not all the sources which have been mentioned can be confidently considered
to be present’ (O’Mongain 1973) and that ‘extreme caution must be exercised in drawing
astrophysical conclusions from reports of the detection of cosmic γ-ray lines’ (Cherry et al.
1980).

Two frequentist alternatives to the above procedure have been proposed by gamma-ray
astronomers (O’Mongain 1973; Cherry et al. 1980). They improve on the usual method
by using the Poisson distribution rather than the Gaussian distribution to describe the
data. But they have further weaknesses. First, following Hearn (1969), both procedures
interpret a likelihood ratio as the covering probability of a confidence region, and thus are
not even correct frequentist procedures (Li and Ma 1983). Second, none of the procedures
correctly accounts for the uncertainty in the background rate. O’Mongain (1973) tries to
find ‘conservative’ results by using as a background estimate the best-fit value plus one
standard deviation. Cherry et al. (1980) try to more carefully account for the background
uncertainty by a method similar to marginalization; but strangely they only include integral
values of the product of the background rate and the observing time in their analysis.

More recently, Zhang and Ramsden (1990) have addressed this problem, using known
results in the statistics literature to improve on the Gaussian approximation. The calcula-
tions involved are complicated and will not be described further here. But their confidence
regions have a peculiar behavior that calls into question their reliability. When no back-
ground counts are observed over a long time interval, we become essentially certain that
the background rate is zero. In this case, then, the ‘On/Off’ result should reduce to the
well-known result for the measurement of a signal with no background (see, e.g., Gehrels
1986). Instead, the Zhang and Ramsden interval collapses to zero size about s = 0, even
when counts have been observed on-source: the procedure indicates certainty that s = 0
when we are certain that s > 0. This happens regardless of the value of Toff .

The presence of prior information, the presence of a nuisance parameter, and the
discrete/continuous character of the Poisson distribution all conspire to make this a difficult
research problem for a frequentist. In contrast, the Bayesian solution to this problem is
again a straightforward ‘beginner’ problem, as we now show.

First we consider the ‘off’ measurement. Suppose we count Noff events in a time
Toff from an ‘empty’ part of the sky. These data lead to a posterior distribution for the
background rate, b, of exactly the same form as equation (5.5):

p(b | NoffIb) =
T (bT )Noff e−bT

Noff !
. (5.8)
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Now consider the ‘on’ measurement. Suppose we count Non events in a time Ton from
measurements on source. This measurement provides us with information about both b
and the source rate s. From Bayes’ theorem, the joint posterior density for s and b is,

p(sb | NonI) = p(sb | I)
p(Non | sbI)

p(Non | I)

= p(s | bI)p(b | I)
p(Non | sbI)

p(Non | I)
. (5.9)

Of course, the information I includes the information from the background measurement,
as well as additional information Is specifying the possible presence of a signal. We can
express this symbolically by writing I = NoffIbIs.

The likelihood is the Poisson distribution for a source with strength s + b:

p(Non | sbI) =
[(s + b)Ton]None−(s+b)Ton

Non!
. (5.10)

The prior for s, p(s | bI), we will again take to be uniform,

p(s | bI) = 1. (5.11)

To be rigorous, we should set a range and normalize this prior, and later consider the limit
of large range, but the posterior we will find using this improper prior will be proper, so
we need not go through the trouble of explicitly taking the limit. The prior for b in this
problem is informative, since we have the background data available. In fact, since Is is
irrelevant to b, the prior for b in this problem is p(b | NoffIb), the posterior for b from the
background estimation problem; it is given by equation (5.8). We can now calculate the
joint posterior for s and b by normalizing the product of equations (5.7), (5.9), and the
uniform prior for s. Ignoring the normalization for now, Bayes’ theorem (equation (5.9))
gives the dependence of the joint posterior on the parameters as

p(sb | NonI) ∝ (s + b)NonbNoff e−sTone−b(Ton+Toff ). (5.12)

To find the posterior density for the source strength, independent of the background, we just
marginalize with respect to b, calculating p(s | nI) =

∫

db p(sb | nI). Helene (1983) noted
that the background uncertainty can be accounted for in this manner; but he only treated
the case where the number of counts is large enough to justify a Gaussian approximation.
The exact integral can be easily calculated after expanding the binomial, (s + b)Non , in
equation (5.12). The resulting normalized posterior (in the limit of large smax) is,

p(s | NonI) =

Non
∑

i=0

Ci
Ton(sTon)ie−sTon

i!
, (5.13)

with

Ci ≡
(1 + Toff

Ton
)i (Non+Noff−i)!

(Non−i)!
∑Non

j=0(1 + Toff

Ton
)j (Non+Noff−j)!

(Non−j)!

. (5.14)
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Note that the denominator of Ci is simply the numerator summed over i, so that
∑n

i=1 Ci =
1.

This result is very appealing. Comparing it with equation (5.5), we see that Bayes’
theorem estimates s by taking a weighted average of the posteriors one would obtain at-
tributing 0, 1, 2,. . ., Non events to the signal. The weights depend on Non, Ton, Noff , and
Toff so that the emphasis is placed on a weak signal or a strong signal, depending on how
Non/Ton compares with Noff/Toff .

The form of equation (5.13) suggests that Ci is the probability that i of the events
observed on-source are from the source, taking into account the information about the
background provided by the off-source measurement. In fact, this probability can be calcu-
lated directly. Given the posterior distribution for the background rate, equation (5.8), the
posterior predictive distribution that n′ background events will be observed in an interval
Ton can be calculated according to

p(n′ | Ib) =

∫ ∞

0

p(n′ | bIb)p(b | Ib)db, (5.15)

where p(n′ | bIb) is given by the Poisson distribution with expectation bTon, and p(b | Ib)
is given by equation (5.8). The reader may verify that assigning n′ = n − i events to the
background with probability given by equation (5.15) leads to an alternate derivation of
equation (5.13) that explicitly identifies the Ci with the probability that n − i events are
background events. This demonstrates both the consistency and the ‘sophisticated subtlety’
of Bayesian inference; in fact, requirement of this kind of consistency plays an important
role in the foundation of the theory (see, e.g., Loredo 1990). Application of this result to
actual data, including a comparison with frequentist results, will be presented elsewhere.

5.3 Poisson Spectrum/Shape Analysis

So far we have considered the simplest possible Poisson problems: inferring the value of a
constant rate. It is astonishing that these problems are so difficult from the frequentist point
of view that no satisfactory frequentist solution to the simple problem of analyzing on/off
measurements has yet appeared in the astrophysical literature, and that in fact several
demonstrably unsatisfactory procedures have been presented. Regardless of whether a
fully satisfactory procedure exists elsewhere in the frequentist literature, it is troubling
that skilled scientists have been thwarted in finding the solution to such apparently simple
problems as those just discussed. In contrast, we have easily found the Bayesian solutions
to these problems.

Now we will briefly consider a class of more complicated problems: inferring character-
istics of a time-varying rate function, r(t; θ) from the arrival times, ti, of N events detected
in a time interval T . Astronomers frequently focus attention on periodic rate functions,
with one of the model parameters being a frequency, ω. Two commonly considered prob-
lems astronomers address with such data are, (1) the detection problem: is there evidence
that a periodic signal is present, and (2) the estimation problem: what is the frequency.
Bayesian and frequentist methods for addressing these problems differ greatly.
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5.3.1 Frequentist Analyses

The frequentist procedures used for these problems calculate the value of some statistic,
S(ω), at some finite set of frequencies, ωi (i = 1 to Nω). The detection problem is addressed
by calculating the distribution for S assuming that the signal is constant; the location of
the maximum observed value of S(ωi) in this distribution is then used to decide whether
the assumption of a uniform rate should be rejected. If there is evidence for a periodic
signal, the estimation problem is addressed using the functional dependence of S(ω) on ω.

Three choices for S dominate current frequentist analyses of arrival time data by
astronomers (see, e.g., Leahy et al. 1983; and Leahy, Elsner, and Weisskopf 1983), though
several other statistics have been used as well. One choice requires binning the data into
uniformly spaced bins containing several events each; the power spectrum of the binned
time series, calculated using the discrete Fourier transform (DFT), is used as the statistic.
A ‘χ2’ statistic is used in the ‘epoch folding’ (EF) approach. Here one folds the arrival
times modulo some trial period to produce a phase, φi, for each event in the interval [0, 2π].
The phases are then binned, and the χ2 statistic comparing the resulting histogram with
a uniform distribution is calculated. The third choice is the Rayleigh statistic, R2, used in
the Rayleigh test (RT) for uniformity on a circle (Mardia 1972). R2 is calculated by folding
the arrival times modulo a trial period, placing N unit vectors in the (r, φ) plane at the
resulting phases φi, and calculating the mean squared length of the resultant vector,

R2 =
1

N





(

N
∑

i=1

sin φi

)2

+

(

N
∑

i=1

cos φi

)2


 (5.16)

= 2 +
4

N

∑

i6=j

cos(φj − φi)

R2 is proportional to the Fourier power in the time series at the trial frequency; gener-
alizations of the RT are also used that add the powers at various harmonics (Protheroe
1987).

Several choices the investigator must make complicate the interpretation of procedures
based on these statistics, particularly when they are used for signal detection. Both the
binned DFT and EF methods require a choice of bin size and a choice of initial phase
(i.e., the location of the bin boundaries). Also, if such methods are used to search for an
unknown frequency (as opposed to being used to detect pulsation at a frequency known a
priori from other observations), the number of frequencies searched, Nω, must be carefully
considered in the assessment of the significance of a result.

These difficulties arise because the frequentist analysis does not analyze the data set
as if it were a single sample from an ensemble of sets of arrival times. Instead, it considers
folded versions of the single data set to be samples from an ensemble of sets of phases
(for the RT and EF methods) or sets of binned phases (for the binned DFT method): the
sample space is the space of phases or binned phases, not the space of arrival times. This
complicates the analysis because each folded version of the data set is derived from one set
of observed arrival times, and thus difficult questions of fairness and independence arise.
For example, if we find a ‘4σ’ bump at frequency ω in the DFT, χ2 function, or Rayleigh
statistic, we would consider this significant if we examined only a few other frequencies, but
hardly surprising if we examined 106 ‘well-separated’ frequencies. Thus the implications
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of the value of S(ω) for the existence of a signal depend not only on the value itself, but
on the number of other values that have been examined. This number cannot be chosen
arbitrarily. If it is too large, we may not be able to consider each of the values of the chosen
statistic to be independent samples from a uniform phase distribution; indeed, if two of the
examined frequencies are close enough, the values of the statistic could be identical. Also,
the actual values of the examined frequencies must be specified without consideration of
the data, for if the frequencies are chosen to ensure that S(ω) is maximized at one of the
ωi, the resulting value of S is not a fair sample (Leahy et al. 1983), and the significance of
the signal will be overestimated. Similarly, if the initial phase for the binned DFT and EF
methods is chosen so that the resulting value of S is maximized, the resulting set of binned
phases is not a ‘fair’ sample from the space of random phases, a point whose importance
for time series analysis has only recently been appreciated by astronomers (Protheroe 1985;
Collura et al. 1987), though Press and Schecter (1974) and Hillas (1975) earlier noted the
importance of this affect in other astrophysical problems.

The need to carefully specify the set of frequencies or phases to be examined is the
spectrum analysis analogue to the stopping rule problem discussed in Section 3. More
fundamentally, these difficulties arise because of the presence of nuisance parameters. In
estimating the frequency of a periodic signal, all the other parameters required to describe
the signal (such as its phase and amplitude) are nuisance parameters. In assessing the
evidence that a periodic signal is present at all, the frequency itself becomes a nuisance pa-
rameter. Unable to deal with nuisance parameters in the hypothesis space, the frequentist
methods just described redefine what is to be considered the data so that nuisance param-
eters can be accounted for to some extent by adding additional structure to the sample
space. But such structure so complicates the analysis that the significance of detections
is often incorrectly assessed. Analyses of arrival time data are thus often greeted with
suspicion, and have sometimes been the subject of vehement debate.

5.3.2 Bayesian Analyses

Bayesian analyses of such data proceed very differently. The detection problem is addressed
by assuming the data can be described by one member of a class of model rate functions, in-
cluding among them a constant rate model, and calculating the probabilities of each model;
there is no significant evidence for a periodic signal if the probability of the constant model
is large. The estimation problem is addressed by calculating the full posterior distribution
for the parameters of a model, and then integrating away all the model parameters except
ω, producing a marginal distribution for the frequency.

The Bayesian calculations are much more straightforward than their frequentist coun-
terparts, in part because the sample space is the space of arrival times, not the space of
phases or binned phases, but largely because of Bayesian facility in dealing with nuisance
parameters, which alleviates the need to modify the sample space to attempt to account for
nuisance parameters. As a result, the statistics arising in the Bayesian calculation can be
evaluated at any number of frequencies; questions of independence are eliminated because
alternative hypotheses are dealt with in the hypothesis space, not in the sample space. We
might summarize the distinction between the two methods as follows: frequentist period
searches maximize and then correct the result for the amount of parameter space searched;
Bayesian period searches average over the parameter space.

One apparent drawback of the Bayesian approach is the need to assume specific models
for the shape of the periodic signal in order to address the detection problem. This contrasts
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sharply with frequentist methods that seek to reject a uniform model rather than choose
between a uniform model and periodic models. However, we will see that each statistic used
in frequentist procedures arises naturally in a Bayesian calculation that assumes the signal is
of a very specific form. In this sense these apparently alternative-free procedures implicitly
assume very specific classes of alternatives. This is recognized in thorough frequentist
comparisons of the various statistics, where the power of a statistical test—a measure of its
ability to correctly identify a signal from among two alternatives—is calculated and used
to choose from among competing statistics. Unfortunately, few studies by astronomers
consider the power of a test (Leahy, Elsner and Weisskopf 1983; Protheroe 1987; and
Buccheri and DeJager 1989 are notable exceptions).

The key ingredient in the Bayesian analysis of arrival time data is the likelihood func-
tion. We now describe how the likelihood function can be constructed for any desired
periodic rate function. Then we will briefly note how specific choices of this function lead
us to consider the same statistics used in some frequentist procedures, but to use them in
different ways.

The likelihood function for arrival time data can be built from the Poisson distribution
as follows. Divide the observing interval into many small intervals of size ∆t; we will ulti-
mately consider the limit in which these intervals become infinitesimal, but finite intervals
could represent the precision of the clock recording the arrival times. From the Poisson
distribution, the probability that no event will be detected in an interval ∆t about time t
is,

P0(t) = e−r(t)∆t. (5.17)

Similarly, the probability that a single event will be detected in the interval is,

P1(t) = r(t)∆t e−r(t)∆t. (5.18)

We will assume that the intervals are small enough that no more than one event is observed
in any interval.

The likelihood function, L(θ) ≡ p({ti} | θI), is the product of the probabilities of
detecting each of the observed events, times the product over all intervals not containing
an event of the probability of no detection. That is,

L(θ) =

[

N
∏

i=1

P1(ti)

]

∏

j

P0(tj), (5.19)

where j runs over all intervals not containing an event. From the definitions of P0 and P1

it follows that

L(θ) =

[

N
∏

i=1

r(ti)∆t

]

e
−
∑

j
r(tj)∆t

, (5.20)

where j now runs over all intervals. As noted following equation (5.1), r∆t is really a
shorthand for the integral of r(t) over the interval ∆t. Thus the sum in the exponential is
equal to the integral of r(t) over the observed interval and the likelihood becomes,

L(θ) = ∆tN e
−
∫

T
r(t)dt

N
∏

i=1

r(ti). (5.21)
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Combined with prior probability distributions for the parameters, this likelihood function
yields a posterior distribution for the rate function parameters, θ. This likelihood function
was studied by Cleveland (1983) for frequentist analyses of solar neutrino data; several
investigators used it for analyzing the neutrinos observed from supernova SN 1987A (see
Loredo and Lamb 1989 for a review).

To proceed further, we must specify parametrized models for r(t) and priors for the
parameters. In this limited space we can only briefly indicate the results of a few simple
choices and their relationship to frequentist statistics. We will focus on estimation problems
(e.g., estimating the unknown frequency of an assumed pulsation), only briefly discussing
the equally important and logically prior detection problem (deciding whether or not a
periodic signal is present) which we discuss in greater detail elsewhere (Gregory and Loredo
1992).

If a constant model is studied, r(t) = r, the likelihood function becomes (r∆t)Ne−rT .
In its dependence on r, this is proportional to the likelihood function studied earlier, equa-
tion (5.1). A uniform prior density for r thus leads to a posterior density for r of the form
of equation (5.5), as we should expect.

Moving on to periodic models, perhaps the simplest such model one might study is
one with a sinusoidal variation. Noting that r(t) must be everywhere positive, we write the
rate function as

r(t) = A [1 + f sin(ωt + φ)] , (5.22)

where A is the time averaged rate, f is the pulsed fraction in the interval [0, 1], ω is the
(angular) frequency, and φ is the phase. With this choice, the likelihood function takes the
form,

L(ω, A, f, φ) = (A∆t)Ne−AT
N
∏

i=1

[1 + f sin(ωti + φ)] , (5.23)

where here and throughout this Section we approximate the integrated rate in the expo-
nential by the duration times the time average, AT . If we assign uniform priors to all the
parameters (those for f and φ being bounded between 0 and 1, and 0 and 2π, respectively),
the joint posterior distribution for the parameters is p(ω, A, f, φ | DI) ∝ L(ω, A, f, φ).
The marginal distribution for ω can be found analytically by integrating out the other
parameters; it has the form,

p(ω | DI) = C1 +

C2 [cos ω(t2 − t1) + cos ω(t3 − t1) + . . .] +

C3 [cos ω(t2 − t1) cos ω(t4 − t3) + . . .] +

C4 [cos ω(t2 − t1) cos ω(t4 − t3) cos ω(t6 − t5) + . . .] + . . . , (5.24)

where the Ci are constants. Crudely, the marginal distribution counts the numbers of pairs
of events separated by an integral number of periods, and the numbers of distinct pairs of
pairs of events so separated, and so on. This is to be compared with the Rayleigh statistic,
equation (5.16), which counts only pairs of events. In fact, the leading ω-dependent term
in p(ω) is the Rayleigh statistic.

When the shape of the signal is not known to be sinusoidal, it is necessary to consider
more complicated signal models. One possibility is a sum of harmonically related sinusoids,
with different amplitudes and phases. As was done above, the amplitudes and phases can be
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integrated out, leaving a marginal distribution for ω. Unfortunately, numerical evaluation
of the marginal distribution for such models is prohibitively computationally expensive.
But other models can be considered that combine computational simplicity with usefully
general lightcurve shapes. We will discuss two choices that are related to the frequentist
statistics discussed above.

First, consider a rate function that has the form of an exponentiated sinusoid,

r(t) =
A

2πI0(κ)
eκ cos(ωt+φ). (5.25)

This function is proportional to the vonMises distribution, a circular generalization of the
Gaussian distribution (Mardia 1972). This rate function has one peak per period, with
a location determined by φ and a width determined by κ. Thus it is useful when the
lightcurve is expected to have one peak, but with unknown width or ‘duty cycle.’ The
Bessel function, I0(κ), appears so that the parameter A is the time-averaged rate. When
κ = 0, the rate is constant.

Because this function is the exponential of a sinusoid, the likelihood function has a
convenient form:

L(ω, A, κ, φ) =

[

A∆t

I0(κ)

]N

e−AT eκ
∑

i
cos(ωti+φ). (5.26)

With uniform priors, the phase and amplitude can be integrated out to yield a marginal
distribution for ω and κ of the form,

p(ω, κ | DI) = C
I0 [κNR(ω)]

IN
0 (κ)

, (5.27)

where C is a normalization constant, and R(ω) is the square root of the Rayleigh statistic,
equation (5.16). A marginal distribution for ω can be found by integrating this with respect
to κ numerically.

The data enter this marginal posterior only through R(ω). Thus from a Bayesian
point of view, the Rayleigh statistic exhausts the information about periodicity when the
rate function is of the form of equation (5.25). In the frequentist literature, the Rayleigh
statistic has been criticized because it has been found to be insensitive to signals of narrow
width (Leahy, Elsner, and Weisskopf 1983). In the context of the vonMises model, however,
these frequentist analyses assume that κ = 1. Allowing κ to vary freely may alleviate this
weakness.

For signals that may have more than one peak per period, we need a still more general
model. One possibility is the exponential of the sum of two or more harmonically related
sinusoids. When amplitudes and phases are marginalized, the resulting statistic is closely
related to the Z2

n generalizations of the Rayleigh statistic (Buccheri and DeJager 1989
review the Z2

n statistics). But here we will consider a different, simpler model (Gregory
and Loredo 1992). We approximate the lightcurve with a piecewise constant rate function
with M pieces, each covering an equal fraction of the period. Then we can write the rate
function as

r(t) = AMfj , with j(t) = int [1 + M [(ωt + φ)mod2π]/2π] . (5.28)
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Here j identifies in which of the M pieces the time t falls. The parameter A is again the
time-averaged rate, and the M parameters fj are the fractions of the rate in each of the M
bins. These parameters must be in the range [0, 1], and only M − 1 of them are really free,
since

∑

j fj = 1. Thus A parametrizes the amplitude of the rate, and the fj parametrize
the shape of the lightcurve.

In terms of this piecewise constant rate, the likelihood is,

L(ω, A, φ, {fi}) = MN (A∆t)Ne−AT
M
∏

j=1

f
nj

j , (5.29)

where nj = nj(ω, φ) is the number of events that lie in piece j of the lightcurve, given the
phase and frequency. These numbers correspond to the number of events that lie in bin j
in the EF method.

This piecewise constant model covers a wide variety of shapes, but this variety comes
with a cost: there are lots of parameters. However, the shape parameters can be integrated
out analytically using the generalized Beta integral. Using uniform priors, the resulting
marginal distribution for the frequency and phase is,

p(ω, φ | DI) = C
MN (M − 1)!

(N + M − 1)!

[

n1! n2! . . . nM !

N !

]

. (5.30)

This distribution takes into account information about all of the wide variety of shapes
parametrized by the fj . Again, C is a normalization constant, and only the term in brack-
ets depends on ω and φ. This term is just the reciprocal of the multiplicity of the set of
nj values—the number of ways N events can be distributed in M bins with nj events in
each bin—also called the configurational entropy of the nj . This multiplicity is largest,
and the marginal density is thus smallest, when the nj are all equal. Thus there is strong
evidence of a period only if the resulting set of nj values is not uniform. In fact, Gre-
gory originally proposed studying the multiplicity as a statistic because of this intuitively
appealing behavior (Gregory and Loredo 1992). The Bayesian calculation just described
illuminates the assumptions leading to this statistic, and specifies precisely how to use it
to make probability statements about the signal.

The behavior of the multiplicity as a measure of nonuniformity is remarkably similar
to the idea behind the frequentist EF method. In fact, using Stirling’s approximation, one
can show that

log p(ω, φ | DI) ≈ 1

2
χ2 +

1

2

∑

j

log nj + C(M), (5.31)

where C(M) is a constant depending on M , and χ2 is the same statistic used in the EF
method. Thus we see that, to terms of order log nj , the χ2 statistic exhausts the information
in the data when a piecewise constant model is assumed.

This calculation provides a Bayesian interpretation of the χ2 statistic that leads us to
use it in a manner very different from that in the EF method. First, as we noted earlier,
the choice of phase affects the interpretation of the χ2 statistic in the EF method. This led
Collura et al. (1987) to suggest using χ2 averaged over phase to eliminate this subjective
aspect of the EF method. But equation (5.31) reveals that the proper way to eliminate the
phase from consideration is to average the exponential of χ2/2 over phase, not χ2 itself.
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Second, equation (5.31) shows how to use χ2 to estimate the frequency of the signal:
the exponential of χ2/2, averaged over φ, is the marginal density for ω, and integrals and
moments of this function can be straightforwardly used to estimate the uncertainty with
which the frequency is determined.

Finally, we have so far discussed only the estimation problem of inferring ω, assuming
a periodic signal is present. Bayesian methods can be easily developed for addressing the
detection problem as well. For models like the sinusoid model, equation (5.22), the simplest
way to address the detection problem is to simply estimate the amplitude of the pulsed part
of the signal by calculating the marginal distribution for the pulsed fraction, f . If f = 0 lies
outside, say, the 95% credible region for f , there is significant evidence for a signal. More
rigorously, though, one must perform a Bayesian model comparison calculation, calculating
the probability that the data are from a constant model, or one of the other models we have
discussed. There is not enough space here to describe such calculations (see Gregory and
Loredo 1992), but they are straightforward. They lead to results that depend on the range
of frequencies examined, but not on the number of frequencies examined in that range,
eliminating this subjective aspect of all frequentist tests for periodicity. Further, for the
piecewise constant model, model comparison calculations can be used to determine not
only if there is evidence for a periodic signal, but also the number of bins needed to model
the signal shape, using the M -dependent terms in equation (5.30). Essentially, M becomes
a parameter of the model, to be estimated from the data like the other parameters. No
frequentist method for doing this has yet been offered.

We have only briefly outlined part of the theory of Bayesian spectrum/shape analysis
of event location data. Preliminary investigations of the application of such methods to
simulated and real data show these methods to have great promise. Further development
and study of these methods will be presented elsewhere.

6. ASSIGNING DIRECT PROBABILITIES:
PRIORS AND LIKELIHOODS

We have demonstrated that application of the sum and product rules to probabilities of
hypotheses straightforwardly leads to procedures that perform as well as, and often better
than, their frequentist counterparts. In our calculations, however, we have taken a rather
cavalier attitude toward priors. The presence of priors in Bayesian calculations, and the
historical lack of compelling assignments for priors, has led many to assert that Bayesian
inference is too subjective for use by scientists. Many, too, believe that priors are the
primary element distinguishing Bayesian and frequentist methods, so that Bayesian meth-
ods are only relevant when there is strong prior information. These beliefs have prevented
many scientists from even considering the application of Bayesian methods to their statisti-
cal problems. As a result, Bayesian methods have been dismissed without examining their
performance.

I have deferred a discussion of priors to this late Section for two reasons. First, I want
to emphasize that priors are far from the only distinguishing feature of Bayesian infer-
ence; Bayesian inference differs from frequentist statistics in a much more fundamental way
that drastically affects the calculations one must perform to address a problem regardless
of whether important prior information is available. Second, a proper discussion of prior
probabilities must raise conceptual issues that I wanted to avoid until I demonstrated the
pragmatic superiority of the Bayesian approach, and the serious shortcomings of the fre-
quentist approach. Independent of all philosophical argument, it is a fact that frequentist
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methods suffer from serious problems and inconsistencies, and that Bayesian methods avoid
these problems. With this purely pragmatic motivation, we now study the problem of as-
signing priors. For it is a further fact that logical consistency requires Bayesian calculations
to use priors.

6.1 Priors: One Type of Direct Probability

We begin our discussion by noting the broader context in which the problem of assigning
priors appears in Bayesian inference. The sum and product rules that we have used so
frequently in this paper tell us how to combine known probabilities to find other, related,
probabilities. But before they can give us the numerical values we require in any practical
application of the theory, they require as ‘input’ the numerical values of those probabilities
from which others are calculated. Thus, in a sense, the sum and product rules are only half
of probability theory, the missing half being the rules that specify how some information I
about a proposition A directly leads to a numerical value for the probability p(A | I).

Probabilities that are assigned directly are called direct probabilities. In principle, any
probability could be a direct probability. We might, for example, search for rules that
allow us to directly assign a numerical value to a posterior probability, p(H | DI), and
so avoid using Bayes’ theorem, priors, and likelihoods. In practice, it has proved more
straightforward to use Bayes’ theorem, so the most studied direct probabilities are priors
and likelihoods.

Thus the first point we want to emphasize about priors is that both priors and likeli-
hoods are direct probabilities. The same kind of logical analysis will be needed to justify
assignments of both kinds of probabilities in the formal development of probability theory.
On the other hand, we reserve the same freedom to use scientific judgement, informed by
experience, to assign approximate priors that qualitatively express information in practical
calculations, just as we use judgement to assign approximate likelihoods, both in Bayesian
and frequentist calculations. The next two subsections discuss some of the formal appa-
ratus available for assigning direct probabilities. But then we discuss some guidelines to
help us decide if and when much effort should be spent on formality and rigor in practical
calculations.

6.2 Abstract Probability

Much of the confusion and uneasiness felt toward priors results from the failure to recognize
how radically different the Bayesian concept of probability is from the frequentist concept.
Superficially, Bayesian calculations appear similar to their frequentist counterparts, and
it is tempting to merely plow ahead and calculate as before, only allowing more freedom
regarding the arguments of probability symbols. But on a deeper level Bayesian calculations
only make sense if we drastically change the way we think about probability.

Frequentist statistics identifies probability with frequency—an empirical concept—and
thus seems almost to be a physical theory. It gives randomness and probability the character
of properties of nature. Bayesian probability theory is more abstract. Bayesian probabilities
describe a state of knowledge specified by the information placed to the right of the bar
in a probability symbol. No reference is made to frequency, repetition, randomness, or
any empirical phenomenon. Of course, one is free to study probabilities of propositions
referring to frequencies or other observable phenomena, as is frequently done in practice;
this will lead to derivable mathematical relationships between probabilities and frequencies
(see, e.g., Jaynes 1978). But probabilities themselves are not empirical.
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Frequentist reference to properties of nature makes frequentist statistics appear more
objective than Bayesian inference. This objectivity is illusory, however. The frequencies
required by the theory are those from an infinite number of ‘identical’ repetitions of an ex-
periment. Such frequencies are never available. Thus frequentists must confront a problem
similar to that Bayesians encounter: the assignment of frequencies from incomplete infor-
mation. But this differs from the Bayesian problem in that there is one ‘true’ frequency
distribution realized in nature; the frequentist is not interested in describing incomplete
information, but instead needs to identify the ‘true’ distribution despite incomplete infor-
mation.

For a Bayesian, there is no such thing as an empirically meaningful ‘true’ distribution
for anything, neither for hypotheses nor for data. Probability distributions always describe
an incomplete state of knowledge, not properties of an hypothetical infinite population.
This is true even for situations where we may feel comfortable thinking about randomness
and frequencies as objective properties of a system. In most (possibly all) such situations,
‘randomness’ (i.e., unpredictability) is not a physical property; it is a consequence of lacking
the information necessary to predict outcomes with certainty. For example, the randomness
of coin flipping does not refer to a property of coins; it is a consequence of incomplete
information regarding the properties of the coin being flipped and the precise conditions of
the flip, information that, if available, would enable us to predict outcomes with certainty.

In particular, a Bayesian prior distribution for a parameter, p(θ | I), does not refer to
a population of experiments or worlds, each with different values of θ. It simply describes
what the information I tells us about the various possible values θ might take in the one
case at hand. There is no ‘true’ prior, realized in nature as a frequency distribution that we
must discover (as is assumed by Annis, Cheston, and Primakoff 1953, for example). The
prior expresses what we know or are willing to assume about the single case at hand.

These considerations are as true of likelihood functions as they are of priors. In particu-
lar, Bayesian inference is not concerned with the identification of ‘true’ models or parameter
values. Rather, models and their parameters are viewed as simplified descriptions of a phe-
nomenon in the context of which we describe past data and predict future data (West and
Harrison 1989; Hestenes 1989). Bayesian probability theory is the mathematical language
used for such description. The sum and product rules are the ‘grammar’ of this language,
and the direct probabilities, specified by I, are its ‘vocabulary.’ When it occurs, the word
‘true’ has meaning only in the context of the information I specifying the problem, and
not in any absolute sense. Our notation notes this explicitly: following Jeffreys (1939), all
our probability symbols explicitly show the dependence of the results on the information
assumed.

The distinction between Bayesian and frequentist notions of probability is reflected in
an interesting way in the language used to refer to distributions (Jaynes 1986). Frequentists
speak of p(x) as the distribution of the quantity x: the quantity that is ‘distributed’ in a
frequentist distribution is the argument, which takes on various values with a frequency
distribution p(x). Bayesians speak of p(x | I) as a probability distribution for the quantity
x: the quantity that is ‘distributed’ is the probability, the plausibility assigned to various
possible values of x. The symbol x may refer to an unknown constant, incapable of taking
on any but one value, but if that value is unknown, we distribute plausibility among the
various possible values according to p(x | I).

A useful analogy can be made between probability, a numerical encoding of the qualita-
tive notion of plausibility, and temperature, a numerical encoding of the qualitative notion
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of hot and cold (Jaynes 1993). The Kelvin temperature, T , which appears in thermody-
namics, is an abstract quantity: we do not naturally assign the number ‘273’ to the coldness
of ice! But this abstract mathematical quantity is required to develop a quantitative the-
ory of heat. Similarly, Bayesian probability is an abstract, primitive notion required if we
want to reason consistently and with mathematical precision in the presence of uncertainty
(Jaynes 1990). For both probability and temperature, we can relate the abstract concept to
the intuitive one by application to special cases. Thermodynamics assigns the temperature
T = 273K to ice at the melting point, so if the temperature of something is 273K, we know
it is as cold as ice. Similarly, probability theory assigns a probability of 1/36 to the “snake’s
eyes” outcome of a fair roll of a pair of dice, so an hypothesis with a probability of 1/36
is as plausible as “snake’s eyes.” In the case of probability theory, relating mathematics to
intuition may involve consideration of frequencies, though more often our intuition about
probability derives, not from observations of frequencies, but from counting the number of
outcomes that seem equally plausible a priori.

Part of the value of the abstract mathematical theories is that their abstraction, which
disconnects them from intuition, allows us to apply them to situations far beyond those
accessible to our intuition. Temperatures of 109 degrees Kelvin are intuitively meaningless,
but very meaningful to a physicist; a probability of 10−9 is similarly outside the range of
human experience, but can be very meaningful to a scientist.

6.3 From Information to Probability

The thermal analogy breaks down when we note that temperature is a physical property
whereas probability describes a state of knowledge. Temperatures can be measured, but
probabilities must instead be assigned. The Bayesian counterpart to a thermometer must
be developed; it will not be an instrument, but rather a collection of rules for converting
different kinds of information to probability assignments. These rules cannot be arbitrary,
for though Bayesian distributions are not empirically verifiable frequency distributions,
neither are they arbitrary descriptions of the opinions or whims of an individual. The
rules must ensure that the assigned probabilities satisfy the consistency requirements that
underly the sum and product rules in the foundations of the theory.

Only recently have statisticians recognized that the problem of assigning probabilities
is fully half of probability theory, and requires tools beyond the sum and product rules
for its solution. As a result, this part of the theory is not yet fully developed. Indeed,
it is unlikely that it will ever be complete, since there is probably no end to the kinds of
information one may have about propositions. At present, we can only convert very limited
kinds of information into probability assignments; we are not yet at the point where we can
consider background propositions like, ‘everything expert X knows about A.’ Instead, we
can only consider simple caricatures of the full information a scientist may have about a
phenomenon. But this limited capability is already sufficient to duplicate all of the successes
of frequentist theory, and to move well beyond frequentist capabilities in some problems.

In fact, it is often the case that we want the data to ‘speak for themselves,’ and thus
seek a prior that expresses ignorance, not one which expresses expert knowledge. Much of
the existing literature focuses on such ‘uninformative’ priors; we will review some of this
work here.

The first point to emphasize is that we are never in a state of complete ignorance about
a parameter. We always know something about it. In particular, since the I that appears
in the prior, p(θ | I), is the same as that appearing in the likelihood, L(θ) = p(D | θI),
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we at least know the role θ plays in the likelihood function. Our task is to assign priors to
parameters, not to greek letters; the parameters have some meaning in the context of the
model we are studying, and this meaning is an important piece of information that must
guide our probability assignment (Jaynes 1968; Lindley 1990). In actuality, then, there is
no such thing as an ‘uninformative’ probability assignment; what we seek is an assignment
that is in some sense ‘least informative,’ expressing as little beyond mere specification of
the meaning of the parameter as possible. The background information, I, must specify
precisely the nature of the parameter and what we mean by being ignorant of its value in
enough detail to make the problem of assigning direct probabilities mathematically well-
posed.

There is so much confusion over the issue of ‘uninformative’ priors that it is perhaps
worth taking the space to put this another way. If we really want the data to ‘speak for
themselves,’ all we can do is present the data. Once we introduce a model and parameters
into a problem, we have already used information that is not in the data by themselves,
and to be consistent, we must use this information throughout our analysis. Further, since
we are performing a mathematical analysis, we must state this information in a mathe-
matically precise manner, even though such a mathematically precise specification may be
merely a caricature of our human information. Our problem, then, is not to find some
magic function that is a uniquely correct specification of what we mean by ‘uninformative,’
but rather, to define what we mean by ‘uninformative’ with enough precision to allow un-
ambiguous calculation of the prior corresponding to the chosen definition. Since, as we’ve
already noted, mathematical models are only caricatures of reality, it should come as no
surprise that there are several useful definitions of what one may mean by ‘uninformative,’
and thus several methods for finding uninformative or least informative priors. If we find
that our results depend sensitively on which definition we choose, then we need to very
carefully consider the relationship between our real-world knowledge and our mathematical
definitions. But more often than not, our results will not depend that sensitively on which
definition we use, as we note in section 6.4 below.

We will discuss here two methods for finding least informative assignments from infor-
mation that may at first seem too vague to allow precise mathematical description. Each
method will be appropriate when we have a particular kind of information about a model.
First we will discuss the group invariance method developed by Jaynes (1968, 1973, 1980,
1993). This method is often appropriate when the parameters have a physical interpretation
that allows us to identify two mathematical descriptions of a situation as being equivalent.
Then we will discuss a predictive method that may be appropriate when the parameters
do not have an obvious physical meaning, but are instead primarily useful for summariz-
ing or predicting data, as when we fit data to a straight line (e.g., in the Tully-Fisher or
Faber-Jackson relations). This was the method used by Bayes in his famous paper intro-
ducing a special case of what is today known as Bayes’ theorem (Stigler 1982); some recent
applications are reviewed by Geisser (1988).

The key to understanding the group invariance method is to be careful to distinguish
between an actual problem and its mathematical representation. Suppose two investigators
with the same information, I, about a phenomenon analyze the same data set, but choose
to parametrize their models differently. Investigator A chooses θ as the parameter, and
investigator B chooses φ = φ(θ). The actual problems these investigators address are
identical, but the mathematical problems they face—the conversion of the information I
to direct probability assignments for the symbols θ and φ—differ because of the different
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ways each have chosen to label the same actual hypotheses. Thus the functional forms
of their priors will in general differ; A will assign a prior density with functional form
p(θ < θtrue < θ + dθ | I) = f(θ)dθ, and B will assign a different function, p(φ < φtrue <
φ + dφ | I) = g(φ)dφ. But since the two investigators are addressing the same problem,
we demand that the probability A assigns to a region of θ be equal to the probability B
assigns to the corresponding region of φ. This leads to the transformation equation,

f(θ)dθ = g[φ(θ)]dφ(θ). (6.1)

This equation simply states that the two different mathematical problems describe the same
actual problem. It must be true for any choices of θ and φ.

Now suppose the information I identifies particular choices of θ and φ that make
the mathematical problem of assigning p(θ < θtrue < θ + dθ | I) equivalent to that of
assigning p(φ < φtrue < φ + dφ | I); that is, the manner in which I distinguishes between
different values of θ is identical to the manner in which it distinguishes between values of
φ. Symmetries of the likelihood function may help identify such mathematically equivalent
parametrizations. For such parameter choices, the actual functions A and B assign must
be the same. This leads to the symmetry equation,

f(x) = g(x), (6.2)

for all values of the argument, x. This equation can only be true for certain choices of θ
and φ = φ(θ) identified by I.

Combining the transformation and symmetry equations leads to a functional equation
(an equation whose solution is a function) for f (or g),

f(θ) = f [φ(θ)]
dφ(θ)

dθ
. (6.3)

Such a functional equation can be solved for the form of f(θ) (see Aczel 1966 for some
methods), thus identifying the prior expressing the information I.

Perhaps the simplest possible example of an assignment resulting from group invari-
ance is Laplace’s Principle of Indifference (PI) for assigning a least informative probability
distribution to a exhaustive set of N discrete, exclusive hypotheses, Hi (one, and only one,
of the Hi is true). Laplace suggested that the distribution expressing ‘complete ignorance’
about such hypotheses assigns them each the same probability: p(Hi | I) = 1/N . Jaynes
(1993) presents a careful discussion of the PI, deriving it from group invariance. We can
illustrate the principles most simply by considering the case N = 2.

Let the information I specify only that there are two hypotheses, and that they are
exclusive. Let investigator A label the hypotheses A1 and A2, and let B label them B2 and
B1, respectively (B reverses the numbering of the index). Investigator A might express the
information symbolically as the proposition I = (A1 ⊕ A2): ‘Either A1 or A2 is true’ (we
here use ‘⊕’ to indicate exclusive ‘or’). Similarly, B would write I = (B1 ⊕ B2).

Write p(Ai | I) = fi for A, and p(Bi | I) = gi for B. Since A and B are in the same
state of information, we demand that they assign the same probabilities to the same actual
hypotheses; thus the transformation equations for this problem read,

f1 = g2 and f2 = g1. (6.4)
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Now note that I distinguishes between the symbols used for the hypotheses in the same way,
so that the mathematical problems A and B face are symbolically equivalent: I = (A1⊕A2)
distinguishes among the Ai in precisely the same way that I = (B1 ⊕ B2) distinguishes
among the Bi. Thus we require that A and B assign the same functions, giving the
symmetry equations,

fi = gi. (6.5)

Combining equations (6.4) and (6.5), we find the functional equation f1 = f2. Requiring
the distribution to be normalized then gives f1 = f2 = 1/2, the PI assignment for N = 2.
This result is straightforwardly generalized to N > 2 by letting B number the hypotheses
with an order-N cyclic permutation of A’s numbering.

As a simple example with a continuous parameter, consider assigning a prior density to
a location parameter, l, like that considered in the Gaussian estimation problem discussed in
Section 2. Intuitively, if we are ignorant of a location, a displacement of a small amount does
not change our state of knowledge. Thus I will distinguish among values of l in precisely the
same manner in which it distinguishes among values of l′ = l +C. In this way, the physical
meaning of a location parameter identifies a class of parameterizations—those differing by
translations—that lead to mathematically equivalent probability assignment problems. For
such parameters, the functional equation (6.3) takes the form, f(l) = f(l + C), with C
a constant. The solution to this functional equation, unique up to a constant factor, is
f(l) = constant. This is the prior we used in the Gaussian estimation problem and in the
truncated exponential problem in Section 3. Priors for several other types of parameters
have been found by group invariance; Jaynes (1968, 1973, 1980) and Bretthorst (1988)
discuss several important examples. Future development of this method may be hastened
by finding ways to symbolically express the information I in a manner that explicitly
identifies mathematical equivalence between problems, as we did for the PI problem above.

Frequently a model parameter will have no direct physical significance, as is often true
when we are fitting lines or polynomials to data. In such cases, there may not be an obvious
choice of transformation corresponding to prior ignorance. Such parameters have meaning
only insofar as they are useful for summarizing or predicting data. In such cases priors can
sometimes be identified by specifying ignorance about predictions rather than about the
parameters themselves. That is, prior ignorance may best be formulated, not in reference
to the prior, but in reference to the prior predictive distribution, p(D | I). Even parameters
with obvious physical meaning may not have an obvious group invariance; priors for these
parameters, too, may best be found by focusing on their predictive aspects. Specifically,
recall that the prior predictive distribution can be calculated according to

p(D | I) =

∫

p(θ | I)p(D | θI)dθ. (6.4)

Predictive methods seek to find the prior by specifying p(D | I), and solving the integral
equation (6.4) for the prior. They are particularly useful when the data are discrete, which
can greatly simplify the task of assigning a least informative predictive distribution.

For example, consider the estimation of a Poisson rate, r, discussed in Section 5. When
we are so uncertain of r that we cannot even exclude the possibility that r = 0, it is not
clear what group invariance is relevant (scale invariance, usually invoked for such problems,
is excluded if r may vanish). On the other hand, intuition suggests that ignorance of the
rate corresponds to not having any prior preference for seeing any particular number of
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counts; p(n | I) should be constant with respect to n. The prior predictive for this Poisson
problem is given by

p(n | I) =
1

n!T

∫ ∞

0

d(rT ) p(r | I) (rT )ne−rT . (6.5)

For p(n | I) to be constant with respect to n, the integral must be proportional to n! =
Γ(n + 1). But if p(r | I) is constant with respect to r, the integral is, up to a constant
factor, the definition of Γ(n + 1); further, since the integral is of the form of a Laplace
transform, this is the unique solution, up to a constant factor. Thus the prior expressing
ignorance about the number of counts we expect to observe is the constant prior we used
throughout Section 5.

Some other methods available for assigning both least informative and informative
priors are briefly mentioned in Loredo (1990).

6.4 Prior Robustness

Before one worries too much about the precise functional form of a prior, it is worthwhile to
investigate to what extent details of the prior will influence the posterior in the problem of
interest. Consider again the Gaussian estimation problem discussed in Section 2. There we
found the posterior for l to be a Gaussian distribution with a mean and standard deviation
of m and σ/

√
N , respectively. These results were found using a uniform prior for l, which

we have just argued correctly expresses ignorance about a location parameter.
Suppose we had much stronger prior information about l, perhaps from a previous

measurement, that was itself described by a Gaussian distribution with mean l0 and stan-
dard deviation δ. From Bayes’ theorem it is easy to show that the resulting posterior for l
remains Gaussian, but with a mean and standard deviation of,

l̂ =
m + α2l0
1 + α2

, and σl =
σ√
N

(1 + α2)−1/2, (6.1)

where α = σ/(δ
√

N). From these equations we see that unless δ<∼σ/
√

N (so that α2>∼1),
the posterior calculated with the Gaussian prior is not significantly different from that
calculated with a uniform prior, even though the priors are very different.

This result should come as no surprise. It simply says that the prior will have little
effect on our inferences unless our prior information is as informative as the data. Savage
has elevated this observation to a principle, the ‘principle of stable estimation:’ if the
likelihood is large in a region where the prior does not change strongly, and if the prior
nowhere enormously exceeds its value in this region, then it is a good approximation to
use a flat prior (see Edwards, Lindman, and Savage 1963). In such cases the information
provided by the data overwhelms the prior information, and the data essentially “speak for
themselves.” This will usually be the case when there is a lot of data. In such cases there
is no need to bother about whether our prior information is translation invariant, scale
invariant, or diffuse in some other specific manner; it will simply not matter in the end.

Of course, when we do not have a lot of data, the precise form of the prior may strongly
affect our inferences. For example, consider the estimation of a Poisson mean discussed in
Section 5.1. Use of a uniform prior, which we justified above with a predictive argument,
led to the posterior given by equation (5.5). If instead we were sure a priori that r > 0,
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but had no knowledge of the scale of r, a group invariance argument would lead to a
prior proportional to 1/r, rather than a constant prior (Jaynes 1968). The net affect on
the posterior is to replace every occurrence of n on the right hand side of equation (5.5)
with n − 1. When many counts are observed, this change has little effect on inferences:
the posterior mode moves from n/T to (n + 1)/T , and the standard deviation changes
from

√
n − 1/T to

√
n/T . But when only a single count is observed, the posteriors differ

significantly. The posterior based on the scale-invariant prior decays exponentially from
its maximum at r = 0, whereas that from the uniform prior vanishes at r = 0, rises to a
maximum at r = 1/T , and then decays.

This example shows us that when the data do not tell us much, what we know after
consideration of the data strongly depends on what we knew without the data. When in
doubt about how informative the data are, one should perform calculations with several
priors to determine how robust posterior inferences are with respect to prior knowledge. If
the posterior depends sensitively on the prior, we still learn something important: we learn
that the data provide little information. Precise conclusions will then only follow if prior
information can be precisely specified.

Posteriors can depend sensitively on the prior. Far from a weakness of the Bayesian
approach, we consider this to be an important asset of the theory. In this manner, it
automatically warns us when the data are uninformative.

6.5 Objective Bayesian Inference

The sense that priors make Bayesian methods too subjective for use by scientists seeking
scientific objectivity has been exacerbated by the insistence on the part of many Bayesian
statisticians that Bayesian probabilities describe the personal opinions or beliefs of indi-
viduals, and that two individuals possessing the same factual information can nevertheless
assign different probabilities. This ‘subjective Bayesian’ viewpoint is perhaps most closely
identified with L.J. Savage (see, e.g., Edwards, Lindman, and Savage 1963). In the as-
trophysical literature, Sturrock (1973) has proposed the use of subjective probabilities to
systematize personal evaluations of astrophysical theories.

Here we have taken the viewpoint, sometimes called the ‘objective Bayesian’ viewpoint,
that probabilities are an encoding of information, not opinions or beliefs. Within this
viewpoint, we may still consider probabilities that encode the state of knowledge of an
individual if we wish; by understanding I to be the proposition, ‘everything person X
knows about A’, p(A | I) then becomes a description of the state of knowledge of person
X. But we insist that these probabilities describe, not the opinions or beliefs of X, but the
consequences of the knowledge or assumptions on which these are based. Thus two people
in the same state of knowledge about a proposition must assign it the same probability.
The importance of this simple consistency principle, the key to finding objective prior
probability assignments, has been emphasized by Jaynes (1968, 1983, 1993); I have called
it Jaynes Consistency (Loredo 1990). Surely a mathematical theory of uncertainty must
satisfy this simple consistency requirement if it is to have any claim at all to scientific
“objectivity.”
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7. BAYESIAN INFERENCE IN ASTROPHYSICS

The applications discussed here demonstrate the pragmatic and conceptual superiority of
Bayesian inference for the analysis of astrophysical data. Jeffreys advocated the use of
Bayesian methods in geophysics and astronomy long ago, and developed Bayesian solutions
for a wide variety of important problems (Jeffreys 1939); but his work was largely ignored,
partly because of conceptual problems that were only resolved by others after his work.
In recent years, several investigators have finally taken up Jeffrey’s challenge, and have
begun applying Bayesian methods to the analysis of a variety of astrophysical data. The
work of Kraft, Burrows, and Nousek (1991) analyzing Poisson counting data, of Loredo and
Lamb (1992) analyzing the neutrinos observed from supernova SN 1987A, and of Gregory
and Loredo (1992) analyzing event arrival times for periodicity, has been mentioned above.
Here we briefly mention other published analyses.

Bretthorst (1988) has developed a rich theory for the analysis of data sampled with
Gaussian noise, extending earlier work of Jaynes (1987). Applied to periodic models, Bret-
thorst’s algorithm can measure periodic signals with precision and sensitivity greater than
that obtained with standard methods based on the discrete Fourier transform, particularly
when the signal is more complicated than a single sinusoid. Bretthorst (1988) has presented
a preliminary analysis of almost 300 years of sunspot data demonstrating the superiority
of Bayesian methods for the analysis of such data.

In another preliminary study, Jaynes (1988) and Bretthorst and Smith (1989) have
applied Bretthorst’s methods to the problem of resolving closely spaced point sources
with separations significantly smaller than the width of the imaging point spread func-
tion, demonstrating that Bayesian methods can easily resolve such objects under certain
conditions.

Morrow and Brown (1988) have applied Bayesian methods to the analysis of helio-
seismology data. Their calculation uses prior information about the relationship between
the frequencies and wavenumbers of solar oscillations to make an ill-posed fitting problem
well-posed.

Goebel, et al. (1989) have applied the ‘AutoClass II’ Bayesian classification program
developed by Cheeseman, et al. (1988) to the problem of identifying classes of objects in
the Low Resolution Spectra (LRS) atlas of objects observed by the Infrared Astronomical
Satelite (IRAS). AutoClass II applies Bayesian parameter estimation and model comparison
principles to the spectra of over 5000 objects in the atlas to automatically classify the objects
into a hierarchy of classes whose number and parameters are found automatically from the
data. Many of the resulting classes are in concert with those previously identified by the
IRAS Science team and other later investigators, but several new classes were also identified.
A number of these have been verified to be distinct classes by independent observations of
additional properties of the member objects, such as their spatial distribution. The models
underlying AutoClass II are very simple; its great success in classifying IRAS LRS data
should motivate its application to other astrophysical data, as well as the extension of the
algorithm to more sophisticated models.

Bayesian notions have inspired the development of maximum entropy methods for the
deconvolution of astrophysical images, though all published astrophysical applications of
such methods have so far relied on frequentist statistical criteria. Recently Gull (1989)
and Skilling (1990) have developed a fully Bayesian entropic deconvolution method that
provides, not only a single ‘best’ deconvolution, but a probability distribution for the flux in
various regions of the image, allowing calculation of ‘error bars.’ Sibisi (1990) has applied
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this method to the analysis of nuclear magnetic resonance data, but it has yet to be applied
to astrophysical data.

The past several decades have seen a growth of interest in Bayesian methods in applied
statistics, econometrics, and other fields so rapid that it has been termed a ‘Bayesian
revolution.’ We look forward to a similar revolution occurring in astrophysics—the field for
which Laplace first developed such methods—bringing with it new clarity and precision in
the quantification of uncertainty, and better enabling astrophysics to fulfill its promise as
the arena in which the unifying power of physics can be most spectacularly demonstrated.
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